二次函数知识点
(一)、二次函数概念:
1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.
2. 二次函数的结构特征:
⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵ 是常数,是二次项系数,是一次项系数,是常数项.
(二)、二次函数的性质
1. 当时,抛物线开口向上,对称轴为,顶点坐标为.
当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.
2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.
(三)、二次函数解析式的表示方法
1. 一般式:(,,为常数,);
2. 顶点式:(,,为常数,);
3. 两根式:(,,是抛物线与轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
1.下列关系式中,属于二次函数的是(x为自变量)( )
A. B. C. D.
2. 函数y=x2-2x+3的图象的顶点坐标是( )
A. (1,-4) B.(-1,2) C. (1,2) D.(0,3)
3. 抛物线y=2(x-3)2的顶点在( )
A. 第一象限 B. 第二象限 C. x轴上 D. y轴上
4. 抛物线 的对称轴是( )
A. x=-2 B.x=2 C. x=-4 D. x=4
5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )
A. ab>0,c>0 B. ab>0,c