专题集训2 图象信息类问题
一、选择题
1.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( B )
【解析】表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.
2.小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( D )
A.小涛家离报亭的距离是900 m
B.小涛从家去报亭的平均速度是60 m/min
C.小涛从报亭返回家中的平均速度是80 m/min
D.小涛在报亭看报用了15 min
3.如图,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是( A )
【解析】根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,故y关于x的函数图象是先凹后凸.故选A.
二、填空题
4.按如图所示的程序计算,若开始输入n的值为1,则最后输出的结果是__42__.
4
【解析】n=1时,n(n+1)=2<15;n=2时,n(n+1)=6<15;n=6时,n(n+1)=42>15,输出结果.
5.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.被移动石头的质量为__5__克.
【解析】设被移动的石头重x克,移动之前左右盘各重为a克,作移动处理后,天平仍平衡.则a-x=a+x-10,得x=5.
三、解答题
6.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
解:(1)设y与x的函数关系式为y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得解得此时y与x的函数关系式为y=8x;当x>20时,把(20,160),(40,288)代入y=kx+b中,得解得此时y与x的函数关系式为y=6.4x+32.综上可知,y与x的函数关系式为y= (2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45-x)=-0.6x+347,∵k=-0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=-0.6×35+347=326(元)
4
7.一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶.两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示.请结合图象提供的信息解答下列问题:
(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;
(2)求轿车在乙城停留的时间,并直接写出点D的坐标;
(3) 请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式.(不要求写出自变量的取值范围)
解:(1)甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)得,x+(x+60)=180解得x=60,∴x+60=120,∴轿车和卡车的速度分别为120千米/时和60千米/时
(2)卡车到达甲城需180÷60=3(小时),轿车从甲城到乙城需180÷120=1.5(小时),3+0.5-1.5×2=0.5(小时),∴轿车在乙城停留了0.5小时,点D的坐标为(2,120)
(3)s=180-120×(t-1.5-0.5)=-120t+420
8.某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为m=;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50