由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(十) 指数与指数函数
一、题点全面练
1.··的化简结果为( )
A.2 B.3
C.4 D.6
解析:选B 原式=3··12
=3·3·2·4·3
=3++·2
=3·20=3.
2.函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论中正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,0<b<1
D.0<a<1,b<0
解析:选D 法一:由题图可知0<a<1,当x=0时,a-b∈(0,1),故-b>0,得b<0.故选D.
法二:由图可知0<a<1,f(x)的图象可由函数y=ax的图象向左平移得到,故-b>0,则b<0.故选D.
3.化简4a·b÷的结果为( )
A.- B.-
C.- D.-6ab
解析:选C 原式=4÷ab=-6ab-1=-,故选C.
4.设x>0,且1<bx<ax,则( )
A.0<b<a<1 B.0<a<b<1
C.1<b<a D.1<a<b
解析:选C 因为1<bx,所以b0<bx,
因为x>0,所以b>1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
因为bx<ax,所以x>1,
因为x>0,所以>1,所以a>b,所以1<b<a.故选C.
5.已知a=(),b=2,c=9,则a,b,c的大小关系是( )
A.b<a<c B.a<b<c
C.b<c<a D.c<a<b
解析:选A a=()=2=2,b=2,c=9=3,
由函数y=x在(0,+∞)上为增函数,得a<c,
由函数y=2x在R上为增函数,得a>b,
综上得c>a>b.故选A.
6.函数f(x)=ax+b-1(其中0<a<1,且0<b<1)的图象一定不经过( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选C 由0<a<1可得函数y=ax的图象单调递减,且过第一、二象限,因为0<b<1,所以-1<b-1<0,
所以0<1-b<1,
y=ax的图象向下平移1-b个单位即可得到y=ax+b-1的图象,
所以y=ax+b-1的图象一定在第一、二、四象限,一定不经过第三象限.故选C.
7.已知函数f(x)=则函数f(x)是( )
A.偶函数,在[0,+∞)单调递增
B.偶函数,在[0,+∞)单调递减
C.奇函数,且单调递增
D.奇函数,且单调递减
解析:选C 易知f(0)=0,当x>0时,f(x)=1-2-x,-f(x)=2-x-1,此时-x<0,则f(-x)=2-x-1=-f(x);当x<0时,f(x)=2x-1,-f(x)=1-2x,此时-x>0,则f(-x)=1-2-(-x)=1-2x=-f(x).即函数f(x)是奇函数,且单调递增,故选C.
8.二次函数y=-x2-4x(x>-2)与指数函数y=x的交点有( )
A.3个 B.2个
C.1个 D.0个
解析:选C 因为二次函数y=-x2-4x=-(x+2)2+4(x>-2),且x=-1时,y=-x2-4x=3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
y=x=2,
在坐标系中画出y=-x2-4x(x>-2)与y=x的大致图象,
由图可得,两个函数图象的交点个数是1.故选C.
9.已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为( )
解析:选A 因为x∈(0,4),所以x+1>1,
所以f(x)=x-4+=x+1+-5≥2 -5=1,
当且仅当x=2时取等号,此时函数有最小值1,
所以a=2,b=1,
此时g(x)=2|x+1|=
此函数图象可以看作由函数y=的图象向左平移1个单位得到.
结合指数函数的图象及选项可知A正确.故选A.
10.函数f(x)=的单调递减区间为________.
解析:设u=-x2+2x+1,∵y=u在R上为减函数,∴函数f(x)=的单调递减区间即为函数u=-x2+2x+1的单调递增区间.
又u=-x2+2x+1的单调递增区间为(-∞,1],
∴f(x)的单调递减区间为(-∞,1].
答案:(-∞,1]
11.不等式<恒成立,则a的取值范围是________.
解析:由指数函数的性质知y=x是减函数,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
因为<恒成立,
所以x2+ax>2x+a-2恒成立,
所以x2+(a-2)x-a+2>0恒成立,
所以Δ=(a-2)2-4(-a+2)<0,
即(a-2)(a-2+4)<0,
即(a-2)(a+2)<0,
故有-2<a<2,即a的取值范围是(-2,2).
答案:(-2,2)
12.已知函数f(x)=x3(a>0,且a≠1).
(1)讨论f(x)的奇偶性;
(2)求a的取值范围,使f(x)>0在定义域上恒成立.
解:(1)由于ax-1≠0,则ax≠1,得x≠0,
∴函数f(x)的定义域为{x|x≠0}.
对于定义域内任意x,有
f(-x)=(-x)3
=(-x)3
=(-x)3
=x3=f(x),
∴函数f(x)是偶函数.
(2)由(1)知f(x)为偶函数,
∴只需讨论x>0时的情况,当x>0时,要使f(x)>0,
则x3>0,
即+>0,
即>0,则ax>1.
又∵x>0,∴a>1.
∴当a∈(1,+∞)时,f(x)>0.
二、专项培优练
(一)易错专练——不丢怨枉分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
1.设y=f(x)在(-∞,1]上有定义,对于给定的实数K,定义fK(x)=给出函数f(x)=2x+1-4x,若对于任意x∈(-∞,1],恒有fK(x)=f(x),则( )
A.K的最大值为0 B.K的最小值为0
C.K的最大值为1 D.K的最小值为1
解析:选D 根据题意可知,对于任意x∈(-∞,1],恒有fK(x)=f(x),则f(x)≤K在x≤1上恒成立,即f(x)的最大值小于或等于K即可.
令2x=t,则t∈(0,2],f(t)=-t2+2t=-(t-1)2+1,可得f(t)的最大值为1,
∴K≥1,故选D.
2.已知实数a,b满足>a>b>,则( )
A.b<2 B.b>2
C.a< D.a>
解析:选B 由>a,得a>1,由a>b,得2a>b,故2a<b,由b>,得b>4,得b<4.由2a<b,得b>2a>2,a<<2,故1<a<2,2<b<4.
对于选项A、B,由于b2-4(b-a)=(b-2)2+4(a-1)>0恒成立,故A错误,B正确;对于选项C,D,a2-(b-a)=2-,由于1<a<2,2<b<4,故该式的符号不确定,故C、D错误.故选B.
3.设a>0,且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求实数a的值.
解:令t=ax(a>0,且a≠1),
则原函数化为y=f(t)=(t+1)2-2(t>0).
①当0<a<1,x∈[-1,1]时,t=ax∈,
此时f(t)在上为增函数.
所以f(t)max=f=2-2=14.
所以2=16,解得a=-(舍去)或a=.
②当a>1时,x∈[-1,1],t=ax∈,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
此时f(t)在上是增函数.
所以f(t)max=f(a)=(a+1)2-2=14,
解得a=3或a=-5(舍去).
综上得a=或3.
(二)交汇专练——融会巧迁移
4.[与基本不等式交汇]设f(x)=ex,0<a<b,若p=f,q=f,r=,则下列关系式中正确的是( )
A.q=r<p B.p=r<q
C.q=r>p D.p=r>q
解析:选C ∵0<a<b,∴>,又f(x)=ex在(0,+∞)上为增函数,∴f>f(),即q>p.又r===e=q,故q=r>p.故选C.
5.[与一元二次函数交汇]函数y=x-x+1在区间[-3,2]上的值域是________.
解析:令t=x,
因为x∈[-3,2],所以t∈,
故y=t2-t+1=2+.
当t=时,ymin=;
当t=8时,ymax=57.
故所求函数的值域为.
答案:
6.[与函数性质、不等式恒成立交汇]已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
解:(1)因为f(x)是R上的奇函数,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以f(0)=0,即=0,解得b=1.
从而有f(x)=.
又由f(1)=-f(-1)知=-,解得a=2.
(2)由(1)知f(x)==-+,
由上式易知f(x)在R上为减函数,又因为f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).
因为f(x)是R上的减函数,由上式推得t2-2t>-2t2+k.
即对一切t∈R有3t2-2t-k>0,
从而Δ=4+12k<0,解得k<-.
故k的取值范围为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费