由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(一) 对数与对数函数
一、题点全面练
1.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=( )
A.log2x B.
C.logx D.2x-2
解析:选A 由题意知f(x)=logax(a>0,且a≠1),
∵f(2)=1,∴loga2=1,∴a=2.
∴f(x)=log2x.
2.如果logx<logy<0,那么( )
A.y<x<1 B.x<y<1
C.1<x<y D.1<y<x
解析:选D ∵logx<logy<log1,∴x>y>1.
3.(2019·新乡一模)若log2(log3a)=log3(log4b)=log4(log2c)=1,则a,b,c的大小关系是( )
A.a>b>c B.b>a>c
C.a>c>b D.b>c>a
解析:选D 由log2(log3a)=1,可得log3a=2,故a=32=9;由log3(log4b)=1,可得log4b=3,故b=43=64;由log4(log2c)=1,可得log2c=4,故c=24=16.∴b>c>a.故选D.
4.(2019·郑州模拟)设a=log50.5,b=log20.3,c=log0.32,则a,b,c的大小关系是( )
A.b<a<c B.b<c<a
C.c<b<a D.a<b<c
解析:选B a=log50.5>log50.2=-1,b=log20.3<log20.5=-1,c=log0.32>log0.3=-1,log0.32=,log50.5===.∵-1<lg 0.2<lg 0.3<0,∴<,即c<a,故b<c<a.故选B.
5.(2019·长春模拟)已知对数函数f(x)=logax是增函数,则函数f(|x|+1)的图象大致是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:选B 由函数f(x)=logax是增函数知,a>1.f(|x|+1)=loga(|x|+1)=由对数函数图象知选B.
6.(2018·肇庆二模)已知f(x)=lg(10+x)+lg(10-x),则( )
A.f(x)是奇函数,且在(0,10)上是增函数
B.f(x)是偶函数,且在(0,10)上是增函数
C.f(x)是奇函数,且在(0,10)上是减函数
D.f(x)是偶函数,且在(0,10)上是减函数
解析:选D 由得x∈(-10,10),故函数f(x)的定义域为(-10,10),关于原点对称.由于f(-x)=lg(10-x)+lg(10+x)=f(x),故函数f(x)为偶函数.而f(x)=lg(10+x)+lg(10-x)=lg(100-x2),y=100-x2在(0,10)上递减,y=lg x在(0,10)上递增,故函数f(x)在(0,10)上递减.
7.(2018·郑州月考)已知2x=72y=A,且+=2,则A的值是________.
解析:由2x=72y=A得x=log2A,y=log7A,则+=+=logA2+2logA7=logA98=2,A2=98.
又A>0,故A==7.
答案:7
8.已知函数f(x)=|log 3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则=________.
解析:因为f(x)=|log3x|=所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m<n且f(m)=f(n),可得则所以0<m2<m<1,则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,所以f(m2)>f(m)=f(n),则f(x)在[m2,n]上的最大值为f(m2)=-log3m2=2,解得m=,则n=3,所以=9.
答案:9
9.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=loga(x+1)(a>0,且a≠1).
(1)求函数f(x)的解析式;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若-1<f(1)<1,求实数a的取值范围.
解:(1)当x<0时,-x>0,
由题意知f(-x)=loga(-x+1),
又f(x)是定义在R上的偶函数,∴f(-x)=f(x).
∴当x<0时,f(x)=loga(-x+1),
∴函数f(x)的解析式为f(x)=
(2)∵-1<f(1)<1,∴-1<loga2<1,
∴loga<loga2<logaa.
①当a>1时,原不等式等价于解得a>2;
②当0<a<1时,原不等式等价于
解得0<a<.
综上,实数a的取值范围为∪(2,+∞).
10.已知函数f(x)=loga(3-ax)(a>0,且a≠1).
(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.
解:(1)∵a>0且a≠1,设t(x)=3-ax,则t(x)=3-ax为减函数,当x∈[0,2]时,t(x)的最小值为3-2a,
∵当x∈[0,2]时,f(x)恒有意义,即x∈[0,2]时,3-ax>0恒成立.
∴3-2a>0,∴a<.
又a>0且a≠1,∴0<a<1或1<a<,
∴实数a的取值范围为(0,1)∪.
(2)由(1)知函数t(x)=3-ax为减函数.
∵f(x)在区间[1,2]上为减函数,
∴y=logat在[1,2]上为增函数,∴a>1,
当x∈[1,2]时,t(x)的最小值为3-2a,f(x)的最大值为f(1)=loga(3-a),
∴即
故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.
二、专项培优练
(一)易错专练——不丢怨枉分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
1.若f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上单调递减,则a的取值范围为( )
A.[1,2) B.[1,2]
C.[1,+∞) D.[2,+∞)
解析:选A 令函数g(x)=x2-2ax+1+a=(x-a)2+1+a-a2,其图象的对称轴为x=a,要使函数f(x)在(-∞,1]上单调递减,则即解得1≤a<2,即a∈[1,2),故选A.
2.(2019·湛江模拟)已知loga<1,那么a的取值范围是________.
解析:∵loga<1=logaa,故当0<a<1时,y=logax为减函数,0<a<;当a>1时,y=logax为增函数,a>,∴a>1.综上所述,a的取值范围是∪(1,+∞).
答案:∪(1,+∞)
3.函数f(x)=log (x2-4)的单调递增区间为________.
解析:设t=x2-4,因为y=logt在定义域上是减函数,所以求原函数的单调递增区间,即求函数t=x2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).
答案:(-∞,-2)
(二)交汇专练——融会巧迁移
4.[与指数函数、幂函数的交汇]已知x1=log2,x2=2,x3满足x3=log3x3,则x1,x2,x3的大小关系是( )
A.x1<x2<x3 B.x1<x3<x2
C.x2<x1<x3 D.x3<x1<x2
解析:选A 由题意可知x3是函数y=x与y=log3x的图象交点的横坐标,在同一直角坐标系中画出函数y=x与y=log3x的图象,如图所示,由图象可知x3>1,而x1=log2<0,0<x2=2<1,所以x3>x2>x1.故选A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.[与数列的交汇]已知数列{an}满足log2an+1=1+log2an(n∈N*),且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=________.
解析:∵log2an+1=1+log2an(n∈N*),
∴log2an+1-log2an=1,即log2=1,∴=2.
∴数列{an}是公比q=2的等比数列,
则a101+a102+…+a110=(a1+a2+a3+…+a10)q100=2100,
∴log2(a101+a102+…+a110)=log22100=100.
答案:100
(三)素养专练——学会更学通
6.[逻辑推理]设x,y,z为正实数,且log2x=log3y=log5z>0,则,,的大小关系不可能是( )
A.<< B.==
C.<< D.<<
解析:选D 设log2x=log3y=log5z=k>0,
可得x=2k>1,y=3k>1,z=5k>1.
∴=2k-1,=3k-1,=5k-1.
①若0<k<1,则函数f(x)=xk-1单调递减,
∴>>;
②若k=1,则函数f(x)=xk-1=1,∴==;
③若k>1,则函数f(x)=xk-1单调递增,
∴<<.
∴,,的大小关系不可能是D.
7.[直观想象]已知点A(1,0),点B在曲线G:y=ln x上,若线段AB与曲线M:y=相交且交点恰为线段AB的中点,则称B为曲线G关于曲线M的一个关联点.那么曲线G关于曲线M的关联点的个数为( )
A.0 B.1
C.2 D.4
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:选B 设B(x0,ln x0),x0>0,线段AB的中点为C,则C,又点C在曲线M上,故=,即ln x0=.此方程根的个数可以看作函数y=ln x与y=的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点.故选B.
8.[逻辑推理]若方程2log2x-log2(x-1)=m+1有两个不同的解,则实数m的取值范围是________.
解析:由题意知即x>1,方程化简为log2=m+1,故=2m+1,即x2-2m+1x+2m+1=0,当x>1时,此方程有两个不同的解,所以得m>1.
答案:(1,+∞)
由莲山课件提供http://www.5ykj.com/ 资源全部免费