人教版九年级数学上册 第21章 《一元二次方程》全章 单元同步检测(共26份打包).zip
加入VIP免费下载

本文件来自资料包: 《人教版九年级数学上册 第21章 《一元二次方程》全章 单元同步检测(共26份打包).zip》 共有 52 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
专题(一) 一元二次方程的解法                ‎ ‎1.用直接开平方法解下列方程:‎ ‎(1)x2-16=0;‎ ‎(2)3x2-27=0;‎ ‎(3)(x-2)2=9;‎ ‎(4)(2y-3)2=16.‎ ‎2.用配方法解下列方程:‎ ‎(1)x2-4x-1=0;‎ ‎(2)2x2-4x-8=0;‎ ‎(3)3x2-6x+4=0;‎ ‎(4)2x2+7x+3=0.‎ ‎3.用公式法解下列方程:‎ ‎(1)x2-2x+3=0;‎ ‎(2)-3x2+5x+2=0;‎ ‎(3)4x2+3x-2=0;‎ ‎(4)x=(x+1)(x-1).‎ ‎4.用因式分解法解下列方程:‎ ‎(1)x2-3x=0;‎ ‎(2)(x-3)2-9=0;‎ ‎(3)(3x-2)2+(2-3x)=0;‎ ‎(4)2(t-1)2+8t=0;‎ ‎(5)3x+15=-2x2-10x;‎ ‎(6)x2-3x=(2-x)(x-3).‎ ‎5.用合适的方法解下列方程:‎ ‎(1)4(x-3)2-25(x-2)2=0;‎ ‎(2)5(x-3)2=x2-9;‎ ‎(3)t2-t+=0.‎ 参考答案 ‎1.(1)移项,得x2=16,根据平方根的定义,得x=±4,即x1=4,x2=-4.‎ ‎ (2)移项,得3x2=27,两边同除以3,得x2=9,根据平方根的定义,得x=±3,即x1=3,x2=-3.‎ ‎ (3)根据平方根的定义,得x-2=±3,即x1=5,x2=-1.‎ ‎ (4)根据平方根的定义,得2y-3=±4,即y1=,y2=-. ‎ ‎2.(1)移项,得x2-4x=1.配方,得x2-4x+22=1+4,即(x-2)2=5.直接开平方,得x-2=±,∴x1=2+,x2=2-.‎ ‎ (2)移项,得2x2-4x=8.两边都除以2,得x2-2x=4.配方,得x2-2x+1=4+1.∴(x-1)2=5.∴x-1=±.∴x1=1+,x2=1-.‎ ‎ (3)移项,得3x2-6x=-4.二次项系数化为1,得x2-2x=-.配方,得x2-2x+12=-+12,即(x-1)2=-.∵实数的平方不可能是负数,∴原方程无实数根.‎ ‎ (4)移项,得2x2+7x=-3.方程两边同除以2,得x2+x=-.配方,得x2+x+()2=-+()2,即(x+)2=.直接开平方,得x+=±.∴x1=-,x2=-3. ‎ ‎3.(1)∵a=1,b=-2,c=3,b2-4ac=(-2)2-4×1×3=0,∴x==.∴x1=x2=.‎ ‎ (2)方程的两边同乘-1,得3x2-5x-2=0.∵a=3,b=-5,c=-2,b2-4ac=(-5)2-4×3×(-2)=49>0,∴x==,∴x1=2,x2=-.‎ ‎ (3)a=4,b=3,c=-2.b2-4ac=32-4×4×(-2)=41>0.x==.∴x1=,x2=.‎ ‎ (4)将原方程化为一般形式,得x2-x-=0.∵a=,b=-,c=-,b2-4ac=(-)2-4××(-)=11>0,∴x==.∴x1=,x2=. ‎ ‎4.(1)x(x-3)=0,∴x=0或x-3=0,∴x1=0,x2=3.‎ ‎ (2)∵(x-3)2-32=0,∴(x-3+3)(x-3-3)=0.∴x(x-6)=0.∴x=0或x-6=0.∴x1=0,x2=6.‎ ‎ (3)原方程可化为(3x-2)2-(3x-2)=0,∴(3x-2)(3x-2-1)=0.∴3x-2=0或3x-3=0,∴x1=,x2=1.‎ ‎ (4)原方程可化为2t2+4t+2=0.∴t2-2t+1=0.∴(t-1)2=0,∴t1=t2=1.‎ ‎ (5)移项,得3x+15+(2x2+10x)=0,∴3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0.∴x+5=0或3+2x=0.∴x1=-5,x2=-.‎ ‎ (6)原方程可化为x(x-3)=(2-x)(x-3).移项,得x(x-3)-(2-x)(x-3)=0.∴(x-3)(2x-2)=0.∴x-3=0或2x-2=0.∴x1=3,x2=1. ‎ ‎5.(1)变形为[2(x-3)]2-[5(x-2)]2=0,即(2x-6)2-(5x-10)2=0.∴(2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0.∴x1=,x2=.‎ ‎ (2)5(x-3)2=(x+3)(x-3),整理得5(x-3)2-(x+3)(x-3)=0.∴(x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0.∴x-3=0或4x-18=0.∴x1=3,x2=.‎ ‎(3)方程两边都乘以8,得8t2-4t+1=0,∵a=8,b=-4,c=1,∴b2-4ac=(-4)2-4×8×1=0.∴t==.∴t1=t2=.‎

资料: 1145

进入主页

人气:

10000+的老师在这里下载备课资料