第12章 全等三角形(9)
一、选择题(共9小题)
1.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A.SAS B.ASA C.AAS D.SSS
2.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )
A.6 B.5 C.4 D.3
3.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P( )
A.有且只有1个
B.有且只有2个
C.组成∠E的角平分线
D.组成∠E的角平分线所在的直线(E点除外)
第26页(共26页)
4.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
5.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( )
A. B.2 C.3 D. +2
6.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )
A. B. C. D.1
7.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
①OA=OD;
②AD⊥EF;
③当∠A=90°时,四边形AEDF是正方形;
④AE2+DF2=AF2+DE2.
其中正确的是( )
第26页(共26页)
A.②③ B.②④ C.①③④ D.②③④
8.如图,AD是△ABC的角平分线,则AB:AC等于( )
A.BD:CD B.AD:CD C.BC:AD D.BC:AC
9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.3 B.4 C.6 D.5
二、填空题
10.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是______.
11.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是______.
12.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是______.
13.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为______.
第26页(共26页)
14.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,那么点D到BC的距离是______.
15.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为______.
16.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=______.
17.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为______.
18.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是______.
第26页(共26页)
19.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE=______.
三、解答题
20.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
21.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.
22.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
第26页(共26页)
23.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20步有一树C,继续前行20步到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长就是河宽AB.
请你证明他们做法的正确性.
24.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
25.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
第26页(共26页)
第26页(共26页)
第12章 全等三角形(9)
参考答案
一、选择题
1.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A.SAS B.ASA C.AAS D.SSS
【解答】解:在△ADC和△ABC中,
,
∴△ADC≌△ABC(SSS),
∴∠DAC=∠BAC,
即∠QAE=∠PAE.
故选:D.
2.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )
A.6 B.5 C.4 D.3
【解答】解:如图,
第26页(共26页)
过点P作PE⊥OB于点E,
∵OC是∠AOB的平分线,PD⊥OA于D,
∴PE=PD,
∵PD=6,
∴PE=6,
即点P到OB的距离是6.
故选:A.
3.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P( )
A.有且只有1个
B.有且只有2个
C.组成∠E的角平分线
D.组成∠E的角平分线所在的直线(E点除外)
【解答】解:作∠E的平分线,
可得点P到AB和CD的距离相等,
因为AB=CD,
所以此时点P满足S△PAB=S△PCD.
故选D.
4.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
第26页(共26页)
A.10 B.7 C.5 D.4
【解答】解:作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=2,
∴S△BCE=BC•EF=×5×2=5,
故选C.
5.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( )
A. B.2 C.3 D. +2
【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,
∴CD=DE=1,
又∵直角△BDE中,∠B=30°,
∴BD=2DE=2,
∴BC=CD+BD=1+2=3.
故选C.
6.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )
第26页(共26页)
A. B. C. D.1
【解答】解:∵△ABC为等边三角形,BP平分∠ABC,
∴∠PBC==30°,
∵PC⊥BC,
∴∠PCB=90°,
在Rt△PCB中, =1,
∴点P到边AB所在直线的距离为1,
故选:D.
7.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
①OA=OD;
②AD⊥EF;
③当∠A=90°时,四边形AEDF是正方形;
④AE2+DF2=AF2+DE2.
其中正确的是( )
A.②③ B.②④ C.①③④ D.②③④
【解答】解:如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,
∴①不正确;
∵AD是△ABC的角平分线,
∴∠EAD∠FAD,
第26页(共26页)
在△AED和△AFD中,
∴△AED≌△AFD(AAS),
∴AE=AF,DE=DF,
∴AE2+DF2=AF2+DE2,
∴④正确;
在△AEO和△AFO中,
,
∴△AE0≌△AF0(SAS),
∴EO=FO,
又∵AE=AF,
∴AO是EF的中垂线,
∴AD⊥EF,
∴②正确;
∵当∠A=90°时,四边形AEDF的四个角都是直角,
∴四边形AEDF是矩形,
又∵DE=DF,
∴四边形AEDF是正方形,
∴③正确.
综上,可得
正确的是:②③④.
故选:D.
8.如图,AD是△ABC的角平分线,则AB:AC等于( )
第26页(共26页)
A.BD:CD B.AD:CD C.BC:AD D.BC:AC
【解答】解:如图
过点B作BE∥AC交AD延长线于点E,
∵BE∥AC,
∴∠DBE=∠C,∠E=∠CAD,
∴△BDE∽△CDA,
∴=,
又∵AD是角平分线,
∴∠E=∠DAC=∠BAD,
∴BE=AB,
∴=,
∴AB:AC=BD:CD.
故选:A.
9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
第26页(共26页)
A.3 B.4 C.6 D.5
【解答】解:如图,过点D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB,
∴DE=DF,
由图可知,S△ABC=S△ABD+S△ACD,
∴×4×2+×AC×2=7,
解得AC=3.
故选:A.
二、填空题
10.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是 .
【解答】解:∵∠C=90°,∠A=30°,
∴∠ABC=180°﹣30°﹣90°=60°,
∵BD是∠ABC的平分线,
∴∠DBC=∠ABC=30°,
∴BC=AB=3,
∴CD=BC•tan30°=3×=,
∵BD是∠ABC的平分线,
第26页(共26页)
又∵角平线上点到角两边距离相等,
∴点D到AB的距离=CD=,
故答案为:.
11.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是 4:3 .
【解答】解:∵AD是△ABC的角平分线,
∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,
∴h1=h2,
∴△ABD与△ACD的面积之比=AB:AC=4:3,
故答案为4:3.
12.(2015•台州)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是 3 .
【解答】解:作DE⊥AB于E,
∵AD是∠CAB的角平分线,∠C=90°,
∴DE=DC,
∵DC=3,
∴DE=3,
即点D到AB的距离DE=3.
故答案为:3.
13.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为 3 .
第26页(共26页)
【解答】解:作PF⊥AD于D,如图,
∵四边形ABCD为菱形,
∴AC平分∠BAD,
∵PE⊥AB,PF⊥AD,
∴PF=PE=3,
即点P到AD的距离为3.
故答案为:3.
14.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,那么点D到BC的距离是 3 .
【解答】解:过点D作DE⊥BC于E,
∵在Rt△ABC中,∠A=90°,BD平分∠ABC,
即AD⊥BA,
∴DE=AD,
∵在Rt△ABC中,∠A=90°,AB=4,BD=5,
∴AD==3,
∴DE=AD=3,
第26页(共26页)
∴点D到BC的距离是3.
故答案为:3.
15.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为 15 .
【解答】解:作DE⊥AB于E.
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3.
∴△ABD的面积为×3×10=15.
故答案是:15.
16.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .
【解答】解:如图,过点D作DE⊥AB于E,
第26页(共26页)
∵∠C=90°,AC=6,BC=8,
∴AB===10,
∵AD平分∠CAB,
∴CD=DE,
∴S△ABC=AC•CD+AB•DE=AC•BC,
即×6•CD+×10•CD=×6×8,
解得CD=3.
故答案为:3.
17.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为 10 .
【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,
∴PE=PD=10.
故答案为:10.
18.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是 4 .
第26页(共26页)
【解答】解:∵CD平分∠ACB交AB于点D,
∴∠DCE=∠DCF,
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°,
在△DEC和△DFC中,
(AAS)
∴△DEC≌△DFC,
∴DF=DE=2,
∴S△BCD=BC×DF÷2
=4×2÷2
=4
答:△BCD的面积是4.
故答案为:4.
19.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= 2 .
【解答】解:连结FD,如,
∵△ABC为等边三角形,
∴AC=AB=6,∠A=60°,
∵点D、E、F分别是等边△ABC三边的中点,AB=6,PB=1,
∴AD=BD=AF=3,DP=DB﹣PB=3﹣1=2,EF为△ABC的中位线,
∴EF∥AB,EF=AB=3,△ADF为等边三角形,
∴∠FDA=60°,
∴∠1+∠3=60°,
第26页(共26页)
∵△PQF为等边三角形,
∴∠2+∠3=60°,FP=FQ,
∴∠1=∠2,
∵在△FDP和△FEQ中
,
∴△FDP≌△FEQ(SAS),
∴DP=QE,
∵DP=2,
∴QE=2.
故答案为:2.
三、解答题
20.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
第26页(共26页)
,
∴△ADC≌△CEB(AAS);
(2)解:由题意得:
∵一块墙砖的厚度为a,
∴AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,
在Rt△ACD中:AD2+CD2=AC2,
∴(4a)2+(3a)2=252,
∵a>0,
解得a=5,
答:砌墙砖块的厚度a为5cm.
21.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.
【解答】解:分别作CG⊥AB与G,CH⊥AD与H,
∵AC为∠BAD的角平分线,
∴CG=CH,
∵AB=AD,
∴△ABC面积=△ACD面积,
又∵AE=DF,
∴△AEC面积=△CDF面积,
∴△BCE面积=△ABC面积﹣△AEC面积,
△BCE面积=△ACD面积﹣△CDF面积,
第26页(共26页)
∴△BCE面积=△ACF面积,
∵四边形AECF面积=△AEC面积+△ACF面积,
四边形AECF面积=△AEC面积+△BCE面积,
∴四边形AECF面积=△ABC面积,
又∵四边形ABCD面积=△ABC面积+△ACD面积,
又∵四边形ABCD面积=2△ABC面积,
∴四边形AECF面积为四边形ABCD面积的一半.
22.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
【解答】(1)证明:过点O作OM⊥AB,
∵BD是∠ABC的一条角平分线,
∴OE=OM,
∵四边形OECF是正方形,
∴OE=OF,
∴OF=OM,
∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;
(2)解:∵在Rt△ABC中,AC=5,BC=12,
第26页(共26页)
∴AB===13,
设CE=CF=x,BE=BM=y,AM=AF=z,
∴,
解得:,
∴CE=2,
∴OE=2.
23.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20步有一树C,继续前行20步到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长就是河宽AB.
请你证明他们做法的正确性.
【解答】证明:如图,由做法知:
在Rt△ABC和Rt△EDC中,
第26页(共26页)
∴Rt△ABC≌Rt△EDC(ASA)
∴AB=ED
即他们的做法是正确的.
24.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
【解答】(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.
(2)四边形ADCF是菱形,
证明:AF∥BC,AF=DC,
∴四边形ADCF是平行四边形,
∵AC⊥AB,AD是斜边BC的中线,
∴AD=BC=DC,
∴平行四边形ADCF是菱形.
第26页(共26页)
25.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)成立.
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
第26页(共26页)
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)△DEF是等边三角形.
由(2)知,△ADB≌△CEA,
BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均为等边三角形,
∴∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵BF=AF
在△DBF和△EAF中
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.
第26页(共26页)