由莲山课件提供http://www.5ykj.com/ 资源全部免费
专题检测(九) 基本初等函数、函数与方程
A级——常考点落实练
1.幂函数y=f(x)的图象经过点(3,),则f(x)是( )
A.偶函数,且在(0,+∞)上是增函数
B.偶函数,且在(0,+∞)上是减函数
C.奇函数,且在(0,+∞)上是减函数
D.非奇非偶函数,且在(0,+∞)上是增函数
解析:选D 设幂函数f(x)=xa,则f(3)=3a=,解得a=,则f(x)=x=,是非奇非偶函数,且在(0,+∞)上是增函数.
2.(2017·全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )
A.(-∞,-2) B.(-∞,1)
C.(1,+∞) D.(4,+∞)
解析:选D 由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).
3.已知函数f(x)=ax,其中a>0且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)=( )
A.1 B.a
C.2 D.a2
解析:选A ∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,∴x1+x2=0,又f(x)=ax,∴f(x1)·f(x2)=ax1·ax2=ax1+x2=a0=1.
4.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:
销售单价/元
4
5
6
7
8
9
10
日均销售量/件
400
360
320
280
240
200
160
请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )
A.4 B.5.5
C.8.5 D.10
解析:选C 由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.已知函数f(x)=-log2x,在下列区间中,包含f(x)零点的区间是( )
A.(0,1) B.(1,2)
C.(2,4) D.(4,+∞)
解析:选C 因为f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=-log24=-b>a B.b>c>a
C.c>a>b D.a>c>b
解析:选D 因为a=60.7>1,b=log70.60,且a≠1)的值域为{y|00,且a≠1)的值域为{y|0-且x≠0.
2.已知a>1,f(x)=a,则使f(x)<1成立的一个充分不必要条件是( )
A.-1<x<0 B.-2<x<1
C.-2<x<0 D.0<x<1
解析:选A ∵a>1,∴y=ax在R上为增函数,故f(x)a>c
C.a>b>c D.c>b>a
解析:选C 依题意得,a=2,b=3,c=-cos x=,所以a6=2-2=,b6=3-3=,c6=6=,则a>b>c.
7.(2017·沈阳模拟)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数与其图象相符的是( )
A B C D
解析:选B 由函数y=logax(a>0,且a≠1)的图象可知,a=3,所以y=3-x,y=(-x)3=-x3及y=log3(-x)均为减函数,只有y=x3是增函数,选B.
8.(2017·保定二模)李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为L甲=-5x2+900x-16 000,L乙=300x-2 000(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为( )
A.11 000元 B.22 000元
C.33 000元 D.40 000元
解析:选C 设甲连锁店销售x辆,则乙连锁店销售(110-x)辆,故利润L=-5x2+900x-16 000+300(110-x)-2 000=-5x2+600x+15 000=-5(x-60)2+33 000,∴当x
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
=60时,有最大利润33 000元.
9.(2018届高三·西安八校联考)已知在(0,+∞)上函数f(x)=则不等式log2x-(log4x-1)·f(log3x+1)≤5的解集为( )
A. B.[1,4]
C. D.[1,+∞)
解析:选C 原不等式等价于
或
解得1≤x≤4或<x<1,
所以原不等式的解集为.
10.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递增,若