2018年高考理科数学二轮复习专题训练试题全集(共24份附答案)
加入VIP免费下载

本文件来自资料包: 《2018年高考理科数学二轮复习专题训练试题全集(共24份附答案)》 共有 25 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 专题检测(二十二) 第20题解答题“圆锥曲线的综合问题”专练 ‎1.(2018届高三·广东五校协作体诊断考试)若椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F分成了3∶1的两段.‎ ‎(1)求椭圆的离心率;‎ ‎(2)过点C(-1,0)的直线l交椭圆于不同两点A,B,且=2,当△AOB的面积最大时,求直线l的方程.‎ 解:(1)由题意知,c+=3,‎ 所以b=c,a2=2b2,‎ 所以e== =.‎ ‎(2)设A(x1,y1),B(x2,y2),直线AB的方程为x=ky-1(k≠0),‎ 因为=2,所以(-1-x1,-y1)=2(x2+1,y2),‎ 即y1=-2y2,  ①‎ 由(1)知,椭圆方程为x2+2y2=2b2.‎ 由消去x,‎ 得(k2+2)y2-2ky+1-2b2=0,‎ 所以y1+y2=,  ②‎ 由①②知,y2=-,y1=,‎ 因为S△AOB=|y1|+|y2|,‎ 所以S△AOB=3·=3· ‎≤3·=,‎ 当且仅当|k|2=2,即k=±时取等号,‎ 此时直线l的方程为x-y+1=0或x+y+1=0.‎ ‎2.已知椭圆C:+=1(a>b>0)的左、右顶点分别为A,B,且长轴长为8,T 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 为椭圆上任意一点,直线TA,TB的斜率之积为-.‎ ‎(1)求椭圆C的方程;‎ ‎(2)设O为坐标原点,过点M(0,2)的动直线与椭圆C交于P,Q两点,求·+·的取值范围.‎ 解:(1)设T(x,y),由题意知A(-4,0),B(4,0),‎ 设直线TA的斜率为k1,直线TB的斜率为k2,‎ 则k1=,k2=.‎ 由k1k2=-,得·=-,‎ 整理得+=1.‎ 故椭圆C的方程为+=1.‎ ‎(2)当直线PQ的斜率存在时,设直线PQ的方程为y=kx+2,点P,Q的坐标分别为(x1,y1),(x2,y2),‎ 联立方程消去y,‎ 得(4k2+3)x2+16kx-32=0.‎ 所以x1+x2=-,x1x2=-.‎ 从而,·+·=x1x2+y1y2+[x1x2+(y1-2)(y2-2)]=2(1+k2)x1x2+2k(x1+x2)+4==-20+.‎ 所以-20<·+· ≤-.‎ 当直线PQ的斜率不存在时,·+·的值为-20.‎ 综上,·+·的取值范围为.‎ ‎3.已知椭圆P的中心O在坐标原点,焦点在x轴上,且经过点A(0,2),离心率为.‎ ‎(1)求椭圆P的方程;‎ ‎(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足·=?若存在,求直线l的方程;若不存在,请说明理由.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解:(1)设椭圆P的方程为+=1(a>b>0),‎ 由题意得b=2,e==,‎ ‎∴a=2c,b2=a2-c2=3c2,∴c2=4,c=2,a=4,‎ ‎∴椭圆P的方程为+=1.‎ ‎(2)假设存在满足题意的直线l,易知当直线l的斜率不存在时,·0得(-32k)2-64(3+4k2)>0,‎ 解得k2>.①‎ ‎∵x1+x2=,x1x2=,‎ ‎∴y1y2=(kx1-4)(kx2-4)=k2x1x2-4k(x1+x2)+16,‎ 故x1x2+y1y2=+-+16=,‎ 解得k2=1.②‎ 由①②解得k=±1,‎ ‎∴直线l的方程为y=±x-4.‎ 故存在直线l:x+y+4=0或x-y-4=0满足题意.‎ ‎4.(2018届高三·云南11校跨区调研)已知椭圆E:+=1(a>b>0)的离心率为方程2x2-3x+1=0的解,点A,B分别为椭圆E的左、右顶点,点C在E上,且△ABC面积的最大值为2.‎ ‎(1)求椭圆E的方程;‎ ‎(2)设F为E的左焦点,点D在直线x=-4上,过F作DF的垂线交椭圆E于M,N两点.证明:直线OD把△DMN分为面积相等的两部分.‎ 解:(1)方程2x2-3x+1=0的解为x1=,x2=1,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵椭圆离心率e∈(0,1),∴e=,‎ 由题意得解得 ‎∴椭圆E的方程为+=1.‎ ‎(2)证明:设M(x1,y1),N(x2,y2),D(-4,n),线段MN的中点为P(x0,y0),‎ 故2x0=x1+x2,2y0=y1+y2,‎ 由(1)可得F(-1,0),‎ 则直线DF的斜率为kDF==-,‎ 当n=0时,直线MN的斜率不存在,根据椭圆的对称性可知OD平分线段MN.‎ 当n≠0时,直线MN的斜率kMN==,‎ ‎∵点M,N在椭圆E上,‎ ‎∴ 整理得+=0,‎ 又2x0=x1+x2,2y0=y1+y2,‎ ‎∴+·=0,即=-,‎ 即直线OP的斜率为kOP=-,‎ 又直线OD的斜率为kOD=-,∴OD平分线段MN.‎ 综上,直线OD把△DMN分为面积相等的两部分.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料