由莲山课件提供http://www.5ykj.com/ 资源全部免费
专题检测(五) 空间几何体的三视图、表面积与体积
一、选择题
1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )
解析:选D 先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确.
2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )
A.2 B.
C. D.3
解析:选D 由三视图判断该几何体为四棱锥,且底面为梯形,高为x,故该几何体的体积V=××(1+2)×2×x=3,解得x=3.
3.(2017·广州综合测试)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:选D 由题意可得该几何体可能为四棱锥,如图所示,其高为2,其底面为正方形,面积为2×2=4,因为该几何体的体积为×4×2=,满足条件,所以俯视图可以为一个直角三角形.选D.
4.(2017·新疆第二次适应性检测)球的体积为4π,平面α截球O的球面所得圆的半径为1,则球心O到平面α的距离为( )
A.1 B.
C. D.
解析:选B 依题意,设该球的半径为R,则有R3=4π,由此解得R=,因此球心O到平面α的距离d==.
5.(2018届高三·湖南十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则几何体的表面积为( )
A.4π+96
B.(2+6)π+96
C.(4+4)π+64
D.(4+4)π+96
解析:选D 几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,几何体的表面积为S=6×42+π×22+π×2×=(4+4)π+96.
6.(2018届高三·西安八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )
A. B.
C. D.
解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a,则斜边长为a,圆锥的底面半径为a、母线长为a,因此其俯视图中椭圆的长轴长为a、短轴长为a,其离心率e==.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7.在棱长为3的正方体ABCDA1B1C1D1中,P在线段BD1上,且=,M为线段B1C1上的动点,则三棱锥MPBC的体积为( )
A.1 B.
C. D.与M点的位置有关
解析:选B ∵=,∴点P到平面BC1的距离是D1到平面BC1距离的,即为=1.M为线段B1C1上的点,∴S△MBC=×3×3=,∴VMPBC=VPMBC=××1=.
8.(2017·贵州适应性考试)如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD 的俯视图与正视图面积之比的最大值为( )
A.1 B.
C. D.2
解析:选D 正视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其正视图均是三角形且点P在正视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S正视图=a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以的最大值为=2.
9.(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
A.①② B.①③
C.②④ D.①④
解析:选D 设截面与底面的距离为h,则①中截面内圆的半径为h,则截面圆环的面积为π(R2-h2);②中截面圆的半径为R-h,则截面圆的面积为π(R-h)2;③
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
中截面圆的半径为R-,则截面圆的面积为π2;④中截面圆的半径为,则截面圆的面积为π(R2-h2).所以①④中截面的面积相等,故其体积相等,选D.
10.等腰△ABC中,AB=AC=5,BC=6,将△ABC沿BC边上的高AD折成直二面角BADC,则三棱锥BACD的外接球的表面积为( )
A.5π B.π
C.10π D.34π
解析:选D 依题意,在三棱锥BACD中,AD,BD,CD两两垂直,且AD=4,BD=CD=3,因此可将三棱锥BACD补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R==,故三棱锥BACD的外接球的表面积为4πR2=34π.
11.(2017·郑州第二次质量预测)将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )
A. B.
C. D.
解析:选B 如图所示,设圆柱的半径为r,高为x,体积为V,由题意可得=,所以x=2-2r,所以圆柱的体积V=πr2(2-2r)=2π(r2-r3)(0