2018年高考理科数学二轮复习专题训练试题全集(共24份附答案)
加入VIP免费下载

本文件来自资料包: 《2018年高考理科数学二轮复习专题训练试题全集(共24份附答案)》 共有 25 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 专题检测(二十三) 第21题解答题“函数、导数与不等式”专练 ‎1.已知函数f(x)= ‎(1)求f(x)在区间(-∞,1)上的极小值和极大值点;‎ ‎(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.‎ 解:(1)当x0时,f(x)在[1,e]上单调递增,‎ 则f(x)在[1,e]上的最大值为f(e)=a.‎ 故当a≥2时,f(x)在[-1,e]上的最大值为a;‎ 当a0),‎ h′(x)=-+-2=- ‎=-,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由h′(x)<0,得0<x<或x>1,‎ 故h(x)的单调递减区间是和(1,+∞).‎ ‎(2)问题等价于aln x=有唯一的实根,‎ 显然a≠0,则关于x的方程xln x=有唯一的实根,‎ 构造函数φ(x)=xln x,则φ′(x)=1+ln x,‎ 由φ′(x)=1+ln x=0,得x=e-1,‎ 当0<x<e-1时,φ′(x)<0,φ(x)单调递减,‎ 当x>e-1时,φ′(x)>0,φ(x)单调递增,‎ ‎∴φ(x)的极小值为φ(e-1)=-e-1.‎ 作出函数φ(x)的大致图象如图所示,则要使方程xln x=有唯一的实根,只需直线y=与曲线y=φ(x)有唯一的交点,‎ 则=-e-1或>0,‎ 解得a=-e或a>0,‎ 故实数a的取值范围是{-e}∪(0,+∞).‎ ‎3.(2017·沈阳质检)已知函数f(x)=ex-1-x-ax2.‎ ‎(1)当a=0时,证明:f(x)≥0;‎ ‎(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;‎ ‎(3)若x>0,证明:(ex-1)ln(x+1)>x2.‎ 解:(1)证明:当a=0时,f(x)=ex-1-x,f′(x)=ex-1.‎ 当x∈(-∞,0)时,f′(x)0.‎ 故f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,‎ f(x)min=f(0)=0,∴f(x)≥0.‎ ‎(2)f′(x)=ex-2ax-1,令h(x)=ex-2ax-1,‎ 则h′(x)=ex-2a.‎ ‎①当2a≤1,即a≤时,在[0,+∞)上,h′(x)≥0,h(x)单调递增,h(x)≥h(0),即f′(x)≥f′(0)=0,‎ ‎∴f(x)在[0,+∞)上为增函数,∴f(x)≥f(0)=0,‎ ‎∴当a≤时满足条件.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎②当2a>1时,令h′(x)=0,解得x=ln 2a,在[0,ln 2a)上,h′(x).‎ 设F(x)=ln(x+1)-,‎ 则F′(x)=-=.‎ ‎∵当x>0时,F′(x)>0恒成立,且F(0)=0,‎ ‎∴F(x)>0恒成立.‎ ‎∴原不等式得证.‎ ‎4.(2017·天津高考)设a,b∈R,|a|≤1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x).‎ ‎(1)求f(x)的单调区间;‎ ‎(2)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,‎ ‎①求证:f(x)在x=x0处的导数等于0;‎ ‎②若关于x的不等式g(x)≤ex在区间[x0-1,x0+1]上恒成立,求b的取值范围.‎ 解:(1)由f(x)=x3-6x2-3a(a-4)x+b,‎ 可得f′(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)].‎ 令f′(x)=0,解得x=a,或x=4-a.‎ 由|a|≤1,得a<4-a.‎ 当x变化时,f′(x),f(x)的变化情况如下表:‎ x ‎(-∞,a)‎ ‎(a,4-a)‎ ‎(4-a,+∞)‎ f′(x)‎ ‎+‎ ‎-‎ ‎+‎ f(x)‎    所以f(x)的单调递增区间为(-∞,a),(4-a,+∞),单调递减区间为(a,4-a).‎ ‎(2)①证明:因为g′(x)=ex[f(x)+f′(x)],‎ 由题意知 所以 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解得 所以f(x)在x=x0处的导数等于0.‎ ‎②因为g(x)≤ex,x∈[x0-1,x0+1],‎ 由ex>0,可得f(x)≤1.‎ 又因为f(x0)=1,f′(x0)=0,‎ 所以x0为f(x)的极大值点,结合(1)知x0=a.‎ 另一方面,由于|a|≤1,故a+1<4-a,‎ 由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,‎ 故当x0=a时,f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤ex在[x0-1,x0+1]上恒成立.‎ 由f(a)=a3-6a2-3a(a-4)a+b=1,‎ 得b=2a3-6a2+1,-1≤a≤1.‎ 令t(x)=2x3-6x2+1,x∈[-1,1],‎ 所以t′(x)=6x2-12x,令t′(x)=0,‎ 解得x=2(舍去)或x=0.‎ 因为t(-1)=-7,t(1)=-3,t(0)=1,‎ 因此t(x)的值域为[-7,1].‎ 所以b的取值范围是[-7,1].‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料