10.1 分式
课题 10.1 分式 课型 新授 时间 第十章第 1 课时
教学目标
1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景
或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
重 难 点 分式的概念,掌握分式有无意义的条件。
学习过程 旁注与纠错
一、课前预习与导学
1、把下列用除号表示的式子和分式进行互化:
(1)-25÷x;(2)x÷(y-3);(3)
a - 3b
b ;(4)
x - 2
x + 3。
2、填表:
X -3 -2 -1 0 1 2 3
x
4 - x
3、(1)若分式
A
B有意义,则 B≠__;(2)若分式
A
B无意义,则 B=__;
(3)若分式
A
B的值为零,则 A=0,且 B≠___。
4、下列各式:
2
x,
x + 2
2 ,
x - xy
x ,3x+
y
3,
3x
π + 2,
3x + 2
(x + 1)(x - 1)中,分式有
( )
A. 1 个 B. 2 个 C.3 个 D.4 个
二、新课
(一)、情境创设:
1、京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长 1462km,是
我国最繁忙的铁路干线之一。
如果货车的速度为 akm/h,快速列车的速度是货车的 2 倍,那么
①货车从北京到上海需要多少时间?
②快速列车从北京到上海需要多少时间?
③已知从北京到上海快速列车比货车少用 12 小时,你能列出一个方程吗?2、观察刚才你们所列的式子、方程,它们有什么特点?
(二)、探索活动:
1、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表
示分数的分子和分母,那么 可以表示成什么形式呢?
2、列出下列式子:
(1)一块长方形玻璃板的面积为 2㎡,如果宽为 am,那么长是 m。
(2)小丽用 n 元人民币买了 m 袋瓜子,那么每袋瓜子的价格是 元。
(3)正 n 边形的每个内角为 度。
(4)两块面积分别为 a 公顷、b 公顷的棉田,产棉花分别为 m㎏、n㎏。这
两块棉田平均每公顷产棉花 ______㎏。
3、思考:
(1)这些式子与分数有什么相同和不同之处?
(2)你能归纳一下分式的定义吗?
(3)请你写出几个分式。
(4)下列各式哪些是分式,哪些是整式?
①
x
2;②
4x
x ;③
b
2a;④
y - 8
4 ;⑤
x
6-
1
y;⑥
1
5x+y;⑦
3x - 1
2π ;
⑧
2
x2 + 2x + 1;⑨
3x2 - 4
0.5 。
三、例题教学:
例 1、试解释分式
a
b - 1所表示的实际意义。
例 2、求分式
a - 3
a + 2的值.
(1)a=3;(2)选一个你喜欢的值代入.
例 3、当 取什么值时,分式
2x + 4
x - 1 .
(1) 没有意义?(2)有意义?(3)值为零。
四、中考链接 1、当 取什么值时,分式
a - 3
a2 + 1的值是正数 ?
2、当 x 取何值时,分式
x2 - 4
x - 2 的值为零?
、a b
ba ÷
x
a五、课堂小结:
本节课你学到了哪些知识和方法?