由莲山课件提供http://www.5ykj.com/ 资源全部免费
专题16解直角三角形
2016~2018详解详析第22页
A组基础巩固
1.(2017河北承德一模,9,3分)如图,△ABC的顶点都在正方形网格的格点上,则cos C的值为(D)
A. B. C. D.
2.(2018中考预测)在△ABC中,若+=0,∠A,∠B都是锐角,则∠C的度数是 (C)
A.75° B.90° C.105° D.120°〚导学号92034065〛
3.(2017重庆江北一模,11,4分)如图是某水库大坝的横截面示意图,已知AD∥BC,且AD,BC之间的距离为15米,背水坡CD的坡度i=1∶0.6,为提高大坝的防洪能力需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3∶4,则大坝底端增加的长度CF是(C)米.
A.7 B.11 C.13 D.20
4.(2018中考预测)如图,P(12,a)在反比例函数y=图象上,PH⊥x轴于点H,则tan∠POH的值为.
5.(2017上海普陀一模,19,6分)计算:cos245°+-·tan 30°.
解 原式=+-×=+-1=.
〚导学号92034066〛
B组能力提升
1.(2017江苏泰州一模,9,3分)如图,港口A在观测站O的正东方向,OA=6 km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为(A)
A.3 km B.3 km C.4 km D.(3-3)km
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2.(2017北京模拟,14,3分)如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E,F在线段AD上,tan∠ABC=3,则阴影部分的面积是6.
(第1题图)
(第2题图)
3.(2018中考预测)如图,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD与AC相交于点E,AB=9,cos∠BAC=,tan∠DBC=.
求:(1)边CD的长;
(2)△BCE的面积.
解 (1)∵∠ABC=∠BCD=90°,AB=9,cos∠BAC=,tan∠DBC=,
∴cos∠BAC===,tan∠DBC==,
得AC=15,BC==12,∴DC=5.
即CD的长是5.
(2)由(1)知,AB=9,BC=12,CD=5,
∵∠ABC=∠BCD=90°,
∴AB∥CD,∴==.
作EF∥AB交CB于点F,则△CEF∽△CAB,
∴=,∴=,解得EF=,
故△BCE的面积是==.
4.(2017山东菏泽曹县模拟,20,10分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tan α的值.测量员在山坡P
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O,B,C,A,P在同一平面内.
求:(1)P到OC的距离;
(2)山坡的坡度tan α.
(参考数据sin 26.6°≈0.45,tan 26.6°≈0.50;sin 31°≈0.52,tan 31°≈0.60)
解 (1)如图,过点P作PD⊥OC于点D,PE⊥OA于点E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PD·tan∠BPD=PD·tan 26.6°;
在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,
∴CD=PD·tan∠CPD=PD·tan 31°;
∵CD-BD=BC,∴PD·tan 31°-PD·tan 26.6°=40,
∴0.60PD-0.50PD=40,解得PD=400,
即P到OC的距离为400米.
(2)在Rt△PBD中,BD=PD·tan 26.6°≈400×0.50=200,
∵OB=240,∴PE=OD=OB-BD=40.
∵OE=PD=400,∴AE=OE-OA=400-300=100,
∴tan α===0.4.即坡度为0.4.
〚导学号92034067〛
由莲山课件提供http://www.5ykj.com/ 资源全部免费