由莲山课件提供http://www.5ykj.com/ 资源全部免费
[A组 夯基保分专练]
一、选择题
1.(2018·高考全国卷Ⅰ)已知函数f(x)=2cos2x-sin2x+2,则( )
A.f(x)的最小正周期为π,最大值为3
B.f(x)的最小正周期为π,最大值为4
C.f(x)的最小正周期为2π,最大值为3
D.f(x)的最小正周期为2π,最大值为4
解析:选B.易知f(x)=2cos2x-sin2x+2=3cos2x+1=(2cos2x-1)++1=cos 2x+,则f(x)的最小正周期为π,当x=kπ(k∈Z)时,f(x)取得最大值,最大值为4.
2.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsin B-asin A=asin C,则sin B为( )
A. B.
C. D.
解析:选A.由bsin B-asin A=asin C,
且c=2a,
得b=a,
因为cos B===,
所以sin B= =.
3.(2018·洛阳第一次统考)在△ABC中,角A,B,C的对边分别是a,b,c,若a,b,c成等比数列,且a2=c2+ac-bc,则=( )
A. B.
C. D.
解析:选B.由a,b,c成等比数列得b2=ac,则有a2=c2+b2-bc,由余弦定理得cos A===,故A=,对于b2=ac,由正弦定理得,sin2 B=sin Asin C=·sin C,由正弦定理得,===.故选B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4.(2018·昆明模拟)在△ABC中,已知AB=,AC=,tan∠BAC=-3,则BC边上的高等于( )
A.1 B.
C. D.2
解析:选A.法一:因为tan∠BAC=-3,所以sin∠BAC=,cos∠BAC=-.由余弦定理,得BC2=AC2+AB2-2AC·AB·cos∠BAC=5+2-2×××=9,所以BC=3,所以S△ABC=AB·ACsin∠BAC=×××=,所以BC边上的高h===1,故选A.
法二:因为tan∠BAC=-3,所以cos∠BAC=-