2019届高考数学二轮总复习全套强化训练(31份含答案)
加入VIP免费下载

本文件来自资料包: 《2019届高考数学二轮总复习全套强化训练(31份含答案)》 共有 32 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 一、选择题 ‎1.(2018·高考全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是(  )‎ A.[2,6] B.[4,8]‎ C.[,3] D.[2,3] ‎ 解析:选A.圆心(2,0)到直线的距离d==2,所以点P到直线的距离d1∈[,3].根据直线的方程可知A,B两点的坐标分别为A(-2,0),B(0,-2),所以|AB|=2,所以△ABP的面积S=|AB|d1=d1.因为d1∈[,3],所以S∈[2,6],即△ABP面积的取值范围是[2,6].‎ ‎2.圆C与x轴相切于T(1,0),与y轴正半轴交于A、B两点,且|AB|=2,则圆C的标准方程为(  )‎ A.(x-1)2+(y-)2=2‎ B.(x-1)2+(y-2)2=2‎ C.(x+1)2+(y+)2=4‎ D.(x-1)2+(y-)2=4‎ 解析:选A.由题意得,圆C的半径为=,圆心坐标为(1,),所以圆C的标准方程为(x-1)2+(y-)2=2,故选A.‎ ‎3.半径为2的圆C的圆心在第四象限,且与直线x=0和x+y=2均相切,则该圆的标准方程为(  )‎ A.(x-1)2+(y+2)2=4‎ B.(x-2)2+(y+2)2=2‎ C.(x-2)2+(y+2)2=4‎ D.(x-2)2+(y+2)2=4‎ 解析:选C.设圆心坐标为(2,-a)(a>0),则圆心到直线x+y=2的距离d==2,所以a=2,所以该圆的标准方程为(x-2)2+(y+2)2=4,故选C.‎ ‎4.(2018·湖南湘东五校联考)圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于2的点有(  )‎ A.1个 B.2个 C.3个 D.4个 解析:选B.圆(x-3)2+(y-3)2=9的圆心为(3,3),半径为3,圆心到直线3x+4y 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎-11=0的距离d==2,所以圆上到直线3x+4y-11=0的距离为2的点有2个.故选B.‎ ‎5.在平面直角坐标系内,过定点P的直线l:ax+y-1=0与过定点Q的直线m:x-ay+3=0相交于点M,则|MP|2+|MQ|2=(  )‎ A. B. C.5 D.10‎ 解析:选D.由题意知P(0,1),Q(-3,0),因为过定点P的直线ax+y-1=0与过定点Q的直线x-ay+3=0垂直,所以MP⊥MQ,所以|MP|2+|MQ|2=|PQ|2=9+1=10,故选D.‎ ‎6.(2018·郑州模拟)已知△ABC的三个顶点坐标分别为A(-2,3),B(-2,-1),C(6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为(  )‎ A.x2+y2=1‎ B.x2+y2=37‎ C.x2+y2=4‎ D.x2+y2=1或x2+y2=37‎ 解析:选D.如图,易知AC所在直线的方程为x+2y-4=0.点O到直线x+2y-4=0的距离d==>1,OA==,OB==,OC==,所以以原点为圆心的圆若与三角形ABC有唯一的公共点,则公共点为(0,-1)或(6,-1),所以圆的半径为1或,则该圆的方程为x2+y2=1或x2+y2=37.故选D.‎ 二、填空题 ‎7.(2018·南宁模拟)过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于________.‎ 解析:令P(,0),如图,易知|OA|=|OB|=1,‎ 所以S△AOB=|OA|·|OB|·sin∠AOB ‎=sin∠AOB≤,‎ 当∠AOB=90°时,△AOB的面积取得最大值,此时过点O作OH⊥AB于点H,则|OH|=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 于是sin∠OPH===,易知∠OPH为锐角,所以∠OPH=30°,‎ 则直线AB的倾斜角为150°,故直线AB的斜率为tan 150°=-.‎ 答案:- ‎8.已知动直线l0:ax+by+c-2=0(a>0,c>0)恒过点P(1,m),且Q(4,0)到动直线l0的最大距离为3,则+的最小值为________.‎ 解析:动直线l0:ax+by+c-2=0(a>0,c>0)恒过点P(1,m),所以a+bm+c-2=0.‎ 又Q(4,0)到动直线l0的最大距离为3,‎ 所以 =3,解得m=0.‎ 所以a+c=2.‎ 又a>0,c>0,所以+=(a+c)=≥=,当且仅当c=2a=时取等号.‎ 答案: ‎9.(2018·桂林、百色、梧州、崇左、北海五市联考)设圆C满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为d.当d最小时,圆C的面积为________.‎ 解析:设圆C的圆心为C(a,b),半径为r,则点C到x轴,y轴的距离分别为|b|,|a|.由题设知圆C截x轴所得劣弧所对的圆心角为90°,知圆C截x轴所得的弦长为r,故r2=2b2,又圆C截y轴所得的弦长为2,所以r2=a2+1,从而得2b2-a2=1.又点C(a,b)到直线x-2y=0的距离d=,所以5d2=(a-2b)2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当,即a2=b2=1时等号成立,此时d取得最小值,此时r2=2,圆C的面积为2π.‎ 答案:2π 三、解答题 ‎10.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.‎ ‎(1)求M的轨迹方程;‎ ‎(2)当|OP|=|OM|时,求l的方程及△POM的面积.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解:(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.‎ 设M(x,y),则=(x,y-4),=(2-x,2-y).‎ 由题设知·=0,‎ 故x(2-x)+(y-4)(2-y)=0,‎ 即(x-1)2+(y-3)2=2.‎ 由于点P在圆C的内部,‎ 所以M的轨迹方程是(x-1)2+(y-3)2=2.‎ ‎(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.‎ 由于|OP|=|OM|,故O在线段PM的垂直平分线上.‎ 又P在圆N上,从而ON⊥PM.‎ 因为ON的斜率为3,所以l的斜率为-,‎ 故l的方程为y=-x+.‎ 又|OM|=|OP|=2,O到l的距离为,|PM|=,所以△POM的面积为.‎ ‎11.(2018·高考全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.‎ ‎(1)求l的方程;‎ ‎(2)求过点A,B且与C的准线相切的圆的方程.‎ 解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).‎ 设A(x1,y1),B(x2,y2).‎ 由得k2x2-(2k2+4)x+k2=0.‎ Δ=16k2+16>0,故x1+x2=.‎ 所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.‎ 由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.‎ ‎(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则 解得或 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.‎ ‎12.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).‎ ‎(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;‎ ‎(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;‎ ‎(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.‎ 解:(1)圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.‎ 由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料