由莲山课件提供http://www.5ykj.com/ 资源全部免费
[必练习题]
1.已知tan α=3,则的值为( )
A.- B.-3
C. D.3
解析:选A.==-=-.
2.已知x∈(0,π),且cos=sin2x,则tan等于( )
A. B.-
C.3 D.-3
解析:选A.由cos=sin2x得sin 2x=sin2x,因为x∈(0,π),所以tan x=2,所以tan==.
3.函数y=cos 2x+2sin x的最大值为( )
A. B.1
C. D.2
解析:选C.y=cos 2x+2sin x=-2sin2x+2sin x+1.
设t=sin x(-1≤t≤1),则原函数可以化为y=-2t2+2t+1=-2+,所以当t=时,函数取得最大值.
4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其导函数f′(x)的图象如图所示,则f的值为( )
A.2 B.
C.- D.-
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:选D.依题意得f′(x)=Aωcos(ωx+φ),结合函数y=f′(x)的图象可知,T==4=π,ω=2.又Aω=1,因此A=.因为0<φ<π,<+φ<,且f′=cos=-1,所以+φ=π,所以φ=,f(x)=sin,f=sin=-×=-,故选D.
5.已知x=是函数f(x)=sin(2x+φ)+cos(2x+φ)(0<φ<x)图象的一条对称轴,将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,则函数g(x)在上的最小值为( )
A.-2 B.-1
C.- D.-
解析:选B.因为x=是f(x)=2sin图象的一条对称轴,所以+φ=kπ+(k∈Z),因为0<φ<π,所以φ=,则f(x)=2sin,所以g(x)=-2sin在上的最小值为g=-1.
6.已知△ABC的内角A,B,C的对边分别为a,b,c,若cos C=,bcos A+acos B=2,则△ABC的外接圆面积为( )
A.4π B.8π
C.9π D.36π
解析:选C.由题意知c=bcos A+acos B=2,由cos C=得sin C=,再由正弦定理可得2R==6,所以△ABC的外接圆面积为πR2=9π,故选C.
7.已知非零单位向量a,b满足|a+b|=|a-b|,则a与b-a的夹角可能是( )
A. B.
C. D.
解析:选D.由|a+b|=|a-b|可得(a+b)2=(a-b)2,即a·b=0,而a·(b-a)=a·b-a2=-|a|2<0,即a与b-a的夹角为钝角,故选D.
8.已知向量a=(1,3),b=(-2,k),且(a+2b)∥(3a-b),则实数k=________.
解析:a+2b=(-3,3+2k),3a-b=(5,9-k),由题意可得-3(9-k)=5(3+2k
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
),解得k=-6.
答案:-6
9.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为________.
解析:依题意得|a|=1,a·b=1××cos 45°=1,|d|===1,c·d=a2-b2=-1,因此c在d方向上的投影等于=-1.
答案:-1
10.已知函数f(x)=sin(ω>0),A,B是函数y=f(x)图象上相邻的最高点和最低点,若|AB|=2,则f(1)=________.
解析:设f(x)的最小正周期为T,则由题意,得=2,解得T=4,所以ω===,所以f(x)=sin,所以f(1)=sin=sin =.
答案:
11.在△ABC中,A=60°,b=1,S△ABC=,则=______.
解析:依题意得,bcsin A=c=,则c=4.由余弦定理得a==,因此==.由正弦定理得=.
答案:
由莲山课件提供http://www.5ykj.com/ 资源全部免费