2019届高考数学二轮总复习全套强化训练(31份含答案)
加入VIP免费下载

本文件来自资料包: 《2019届高考数学二轮总复习全套强化训练(31份含答案)》 共有 32 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎[必练习题]‎ ‎1.过圆x2+y2-x-y+=0的圆心,且倾斜角为的直线方程为(  )‎ A.x-2y=0        B.x-2y+3=0‎ C.x-y=0 D.x-y+1=0‎ 解析:选C.由题意知圆的圆心坐标为,所以过圆的圆心,且倾斜角为的直线方程为y=x,即x-y=0.‎ ‎2.圆心为(4,0)且与直线x-y=0相切的圆的方程为(  )‎ A.(x-4)2+y2=1 B.(x-4)2+y2=12‎ C.(x-4)2+y2=6 D.(x+4)2+y2=9‎ 解析:选B.由题意,知圆的半径为圆心到直线x-y=0的距离,即r==2,结合圆心坐标可知,圆的方程为(x-4)2+y2=12,故选B.‎ ‎3.若双曲线-=1(a>0,b>0)的离心率为,则其渐近方程为(  )‎ A.y=±2x B.y=±4x C.y=±x D.y=±x 解析:选C.由题意得e==,又a2+b2=c2,所以=,所以双曲线的渐近线方程为y=±x,选C.‎ ‎4.设AB是椭圆的长轴,点C在椭圆上,且∠CBA=,若|AB|=4,|BC|=,则椭圆的两个焦点之间的距离为(  )‎ A. B. C. D. 解析:选A.不妨设椭圆的标准方程为+=1(a>b>0),如图,由题意知,2a=4,a=2,因为∠CBA=,|BC|=,所以点C的坐标为(-1,1),因为点C在椭圆上,所以+=1,所以b2=,所以c2=a2-b2=4-=,c=,则椭圆的两个焦点之间的距离为.‎ ‎5.已知⊙M经过双曲线S:-=1的一个顶点和一个焦点,圆心M在双曲线S上,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则圆心M到原点O的距离为(  )‎ A.或 B.或 C. D. 解析:选D.因为⊙M经过双曲线S:-=1的一个顶点和一个焦点,圆心M在双曲线S上,所以⊙M不可能过异侧的顶点和焦点,不妨设⊙M经过双曲线的右顶点和右焦点,则圆心M到双曲线的右焦点(5,0)与右顶点(3,0)的距离相等,所以xM=4,代入双曲线方程可得yM=± =±,所以|OM|==,故选D.‎ ‎6.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为(  )‎ A. B. C. D. 解析:选D.易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-‎ ‎12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-,S△OAB=|OF|·|y1-y2|=×==.故选D.‎ ‎7.已知双曲线-=1(a>0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为4,则双曲线的方程为(  )‎ A.-=1 B.-=1‎ C.-=1 D.-=1‎ 解析:选D.根据对称性,不妨设点A在第一象限,A(x,y),则解得因为四边形ABCD 的面积为4,所以4xy==4,解得a=2,故双曲线的方程为-=1,选D.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎8.已知圆C1:(x-1)2+y2=2与圆C2:x2+(y-b)2=2(b>0)相交于A,B两点,且|AB|=2,则b=________.‎ 解析:由题意知C1(1,0),C2(0,b),半径r1=r2=,所以线段AB和线段C1C2相互垂直平分,则|C1C2|=2,即1+b2=4,又b>0,故b=.‎ 答案: ‎9.已知椭圆+=1(a>b>0),以原点O为圆心,短半轴长为半径作圆O,过椭圆的长轴的一端点P作圆O的两条切线,切点为A,B,若四边形PAOB为正方形,则椭圆的离心率为________.‎ 解析:如图,因为四边形PAOB为正方形,且PA,PB为圆O的切线,所以△OAP是等腰直角三角形,故a=b,所以e==.‎ 答案: ‎10.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=________.‎ 解析:由题意知,经过第一象限的双曲线的渐近线方程为y=x.抛物线的焦点为F1,双曲线的右焦点为F2(2,0).又y′=x,故抛物线C1在点M处的切线的斜率为,即x0=,所以x0=p,又点F1,F2(2,0),M三点共线,所以=,即p=.‎ 答案: 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料