由莲山课件提供http://www.5ykj.com/ 资源全部免费
[必练习题]
1.设m,n是两条不同的直线,α,β是两个不同的平面,有下列四个命题:
①若m⊂β,α⊥β,则m⊥α;
②若α∥β,m⊂α,则m∥β;
③若n⊥α,n⊥β,m⊥α,则m⊥β;
④若m∥α,m∥β,则α∥β.
其中正确命题的序号是( )
A.①③ B.①②
C.③④ D.②③
解析:选D.对于①,注意到直线m可能与平面α,β的交线平行,此时结论不成立,因此①不正确;对于②,直线m与平面β必没有公共点,因此m∥β,②正确;对于③,由m⊥α,n⊥α,得m∥n,又n⊥β,因此m⊥β,③正确;对于④,平面α,β可能是相交平面,因此④不正确.综上所述,其中正确命题的序号是②③,选D.
2.如图是一个几何体的三视图,则该几何体的体积是( )
A. B.2
C.3 D.4
解析:选A.由几何体的三视图知,几何体是底面为直角梯形,高为的四棱锥,如图所示,则V=××(1+2)×2×=,故选A.
3.已知一个圆锥底面半径为1,母线长为3,则该圆锥内切球的表面积为( )
A.π B.
C.2π D.3π
解析:选C.依题意,作出圆锥与球的轴截面,如图所示,设球的半径为r,易知轴截面三角形边AB上的高为2,因此=,解得r=,所以圆锥内切球的表面积为4π×=2π,故选C.
4.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一个标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x为( )
A.1.2 B.1.6
C.1.8 D.2.4
解析:选B.该几何体是一个组合体,左边是一个底面半径为,高为x的圆柱,右边是一个长、宽、高分别为5.4-x,3,1的长方体,所以组合体的体积V=V圆柱+V长方体=π·
×x+(5.4-x)×3×1=12.6(其中π=3),解得x=1.6.故选B.
5.已知S,A,B、C是球O表面上的不同点,SA⊥平面ABC,AB⊥BC,AB=1,BC=,若球O的表面积为4π,则SA=( )
A. B.1
C. D.
解析:选B.根据已知把SABC补成如图所示的长方体.因为球O的表面积为4π,所以球O的半径R=1,2R==2,解得SA=1,故选B.
6.棱长都为2的直平行六面体ABCDA1B1C1D1中,∠BAD=60°,则对角线A1C与侧面DCC1D1所成角的正弦值为( )
A. B.
C. D.
解析:选C.过点A1作直线A1M⊥D1C1,交C1D1的延长线于点M,连接CM,可得A1M⊥平面DD1C1C,则∠A1CM就是直线A1C与面DD1C1C所成的角.由所有棱长均为2及∠A1D1C1=120°,得A1M=A1D1sin 60°=,又A1C===4,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以sin∠A1CM==,故选C.
7.已知矩形ABCD,AB=1,BC=,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,( )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”“AB与CD”“AD与BC”均不垂直
解析:选B.若存在某个位置,使得AC⊥BD,作AE⊥BD于E,则BD⊥平面AEC,所以BD⊥EC,在△ABD中,AB2=BE·BD,BE=,而在△BCD中,BC2=BE·BD,BE=,两者矛盾.故A错误.
若存在某个位置,使得AB⊥CD,又因为AB⊥AD,则AB⊥平面ACD,所以AB⊥AC,故AC=1,故B正确,D错误.
若存在某个位置.使得AD⊥BC,又因为AD⊥AB,则AD⊥平面ABC,所以AD⊥AC,而斜边CD小于直角边AD,矛盾,故C错误.
8.如图,在四棱锥PACBD中,底面ACBD为正方形,PD⊥平面ACBD,BC=AC=a,PA=PB=a,PC=a,则点C到平面PAB的距离为________.
解析:根据条件可以将四棱锥置于一个正方体中进行研究,如图所示,易知AB=a,设点C到平面PAB的距离为h,因为VPABC=VCPAB,即×S△ABC·PD=S△PAB·h,所以×a2×a=××(a)2×h,解得h=a,所以点C到平面PAB的距离为a.
答案:a
9.正方体ABCDA1B1C1D1的棱长为1,若动点P在线段BD1上运动,则·的取值范围是________.
解析:以DA所在的直线为x轴,DC所在的直线为y轴,DD1所在的直线为z轴,建立空间直角坐标系Dxyz.
则D(0,0,0),C(0,1,0),A(1,0,0),B(1,1,0),D1(0,0,1).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以=(0,1,0),=(-1,-1,1).
因为点P在线段BD1上运动,
所以设=λ=(-λ,-λ,λ),且0≤λ≤1.
所以=+=+=(-λ,1-λ,λ),
所以·=1-λ∈[0,1].
答案:[0,1]
10.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成四面体PDEF,则四面体中异面直线PG与DH所成的角的余弦值为________.
解析:折成的四面体是正四面体,如图连接HE,取HE的中点K,连接GK,PK,则GK∥DH.故∠PGK即为所求的异面直线所成的角.设这个正四面体的棱长为2,在△PGK中,PG=,GK=,PK==,故cos∠PGK==,即异面直线PG与DH所成的角的余弦值是.
答案:
由莲山课件提供http://www.5ykj.com/ 资源全部免费