湘教版七年级数学下册同步练习全套及答案(共20份)
加入VIP免费下载

本文件来自资料包: 《湘教版七年级数学下册同步练习全套及答案(共20份)》 共有 20 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.2 乘法公式 一.选择题(共 6 小题) 1.下列各式中,能用平方差公式计算的是(  ) A.(p+q)(﹣p﹣q) B.(p﹣q)(q﹣p) C.(5x+3y)(3y﹣5x) D.(2a+3b)(3a﹣2b) 2.计算(1﹣a)(a+1)的结果正确的是(  ) A.a2﹣1 B.1﹣a2 C.a2﹣2a﹣1 D.a2﹣2a+1 3.如果多项式 y2﹣4my+4 是完全平方式,那么 m 的值是(  ) A.1 B.﹣1 C.±1 D.±2 4.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是 144,小正方形的面积是 4,若用 a,b 分别表示矩形的长和宽(a>b),则下列关系中不 正确的是(  ) (第 4 题图) A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=84 5.已知 a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式 a2+b2+c2﹣ab﹣bc﹣ac 的 值为(  ) A.0 B.1 C.2 D.3 6.如果 x2﹣(m+1)x+1 是完全平方式,则 m 的值为(  ) A.﹣1 B.1 C.1 或﹣1 D.1 或﹣3 二.填空题(共 4 小题) 7.已知 m2﹣n2=16,m+n=6,则 m﹣n=   . 8.若 m 为正实数,且 m﹣ =3,则 m2﹣ =   . 9.请看杨辉三角(1),并观察下列等式(2):(第 9 题图) 根据前面各式的规律,则(a+b)6=   . 10.已知 a2+b2=4,则(a﹣b)2 的最大值为   . 三.解答题(共 30 小题) 11.(1)计算并观察下列各式: 第 1 个:(a﹣b)(a+b)=   ; 第 2 个:(a﹣b)(a2+ab+b2)=   ; 第 3 个:(a﹣b)(a3+a2b+ab2+b3)=   ; …… 这些等式反映出多项式乘法的某种运算规律. ( 2 ) 猜 想 : 若 n 为 大 于 1 的 正 整 数 , 则 ( a﹣b ) (an﹣1+an﹣2b+an﹣3b2+……+a2bn﹣3+abn﹣2+bn﹣1)=   ; (3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=   . (4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=   . 12.计算: (1)20132﹣2014×2012;(2)( )2013×1.52012×(﹣1)2014; (3)(2+1)•(22+1)•(24+1)•(28+1)•(216+1)﹣232. 13.(1)填空:(m+ )(m﹣ )=   . (2)化简求值:(1﹣ )(1﹣ )(1﹣ )…(1﹣ )(1﹣ ). 14.化简: (1)5x+3x2﹣(2x﹣2x2﹣1); (2)x2(x﹣2y)(x+2y)﹣(x2+y)(x2﹣y). 15.计算:(1) ×(﹣2)2+(4﹣π)0×(﹣9)﹣1 ; (2)9992﹣1002×998. 16.如图,图 1 为边长为 a 的大正方形中有一个边长为 b 的小正方形,图 2 是由图 1 中阴影 部分拼成的一个长方形. (1)设图 1 中阴影部分面积为 S1,图 2 中阴影部分面积为 S2,请用含 a、b 的代数式表示: S1=   ,S2=   (只需表示,不必化简); (2)以上结果可以验证哪个乘法公式?请写出这个乘法公式   ; (3)运动(2)中得到的公式,计算:20152﹣2016×2014. (第 16 题图)参考答案 一.1.C 2.B 3.C 4.D 5.D 6.D 二.7. 8. 9.a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 10.8 三.11.解:(1)第 1 个:(a﹣b)(a+b)=a2﹣b2; 第 2 个:(a﹣b)(a2+ab+b2)=a3﹣b3; 第 3 个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4; (2)若 n 为大于 1 的正整数,则(a﹣b)(a n﹣1+an﹣2b+an﹣3b2+……+a2bn﹣3+abn﹣2+bn﹣1) =an﹣bn; (3)2n﹣1+2n﹣2+2n﹣3+……+23+22+1= =(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1) =2n﹣1n =2n﹣1; (4)3n﹣1+3n﹣2+3n﹣3+……+33+32+1 = ×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1) = ×(3n﹣1n) = . 12.解:(1)原式=20132﹣(2013+1)(2013﹣1) =20132﹣(20132﹣1) =20132﹣20132+1 =1. (2)原式= ×( )2012×1.52012×(﹣1)2014 = ×( × )2012×1 = ×1×1 = . (3)原式=(2﹣1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)﹣232 =(22﹣1)×(22+1)×(24+1)×(28+1)×(216+1)﹣232 =(24﹣1)×(24+1)×(28+1)×(216+1)﹣232=(28﹣1)×(28+1)×(216+1)﹣232 =(216﹣1)×(216+1)﹣232 =232﹣1﹣232 =﹣1. 13.解:(1)原式=m2﹣ (2)原式=(1﹣ )(1+ )(1﹣ )(1+ )(1﹣ )(1+ )…(1﹣ )(1+ ) (1﹣ )(1+ ) = × × × …× = × = . 14.解:(1)5x+3x2﹣(2x﹣2x2﹣1) =5x+3x2﹣2x+2x2+1 =5x2+3x+1; (2)x2(x﹣2y)(x+2y)﹣(x2+y)(x2﹣y) =x2(x2﹣4y2)﹣(x4﹣y2) =x4﹣4x2y2﹣x4+y2 =﹣4x2y2+y2. 15.(1)解:原式=25×4+1×﹣( ) =100﹣ =99 ; (2)原式=9992﹣(1000+2)(1000﹣2) =9992﹣10002+4 =(999+1000)(999﹣1000)+4 =﹣1999+4 =﹣1995. 16.解:(1)大正方形的面积为 a2,小正方形的面积为 b2, 故图 1 阴影部分的面积值为 a2﹣b2;长方形的长和宽分别为(a+b)、(a﹣b), 故图 2 重拼的长方形的面积为(a+b)(a﹣b); (2)比较上面的结果,都表示同一阴影的面积,它们相等, 即(a+b)(a﹣b)=a2﹣b2,可以验证平方差公式,这也是平方差公式的几何意义; (3)20152﹣2016×2014 =20152﹣(2015+1)(2015﹣1) =20152﹣(20152﹣1) =20152﹣20152+1 =1.

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料