由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(七)数 列 (大题练)
A卷——大题保分练
1.(2018·陕西模拟)已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项.
(1)求数列{an}的通项公式;
(2)若bn=,Sn为数列{bn}的前n项和,求S100的值.
解:(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.∵a3是a1和a9的等比中项,
∴a=a1a9,即(2+2d)2=2(2+8d),解得d=0(舍)或d=2.∴an=a1+(n-1)d=2n.
(2)bn===.
∴S100=b1+b2+…+b100
=×
=×
=.
2.(2018·兰州诊断性测试)在公差不为零的等差数列{an}中,a1=1,a2,a4,a8成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2an,Tn=b1+b2+…+bn,求Tn.
解:(1)设等差数列{an}的公差为d,则依题意有解得d=1或d=0(舍去),∴an=1+(n-1)=n.
(2)由(1)得an=n,∴bn=2n,
∴{bn}是首项为2,公比为2的等比数列,
∴Tn==2n+1-2.
3.(2018·北京调研)已知数列{an}满足a1=1,且an+1=2an,设bn-2=3log2an(n∈N*).
(1)求数列{bn}的通项公式;
(2)求数列{|an-bn|}的前n项和Sn.
解:(1)因为an+1=2an,a1=1,
所以数列{an}是以1为首项,2为公比的等比数列.
所以an=2n-1.
又因为bn-2=3log2an(n∈N*),
所以bn=3log22n-1+2=3(n-1)+2=3n-1.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)因为数列{an}中的项为1,2,4,8,16,…,2n-1,数列{bn}中的项为2,5,8,11,14,…,3n-1,
所以①当n≤4时,|an-bn|=bn-an=3n-1-2n-1,
所以Sn=-
=-2n.
②当n>4时,|an-bn|=an-bn=2n-1-(3n-1),
所以Sn=S4+(a5+a6+…+an)-(b5+b6+…+bn)
=2n-,
综合①②得Sn=
4.(2018·厦门质检)已知数列{an}满足a1=1,an+1=,n∈N*.
(1)求证:数列为等差数列;
(2)设T2n=-+-+…+-,求T2n.
解:(1)证明:由an+1=,得==+,所以-=.又a1=1,则=1,所以数列是首项为1,公差为的等差数列.
(2)设bn=-=,
由(1)得,数列是公差为的等差数列,
所以-=-,即bn==-×,
所以bn+1-bn=-=-×=-.
又b1=-×=-×=-,
所以数列{bn}是首项为-,公差为-的等差数列,
所以T2n=b1+b2+…+bn=-n+×=-(2n2+3n).
5.(2018·洛阳模拟)已知各项均不为零的数列{an}的前n项和为Sn,且对任意的n∈N*,满足Sn=a1(an-1).
(1)求数列{an}的通项公式;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)设数列{bn}满足anbn=log2an,数列{bn}的前n项和为Tn,求证:Tn1,且10Sn=(2an+1)(an+2),n∈N*.
(1)求数列{an}的通项an;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,写出一组符合条件的m,n,k的值;若不存在,请说明理由.
解:(1)由10a1=(2a1+1)(a1+2),得2a-5a1+2=0,解得a1=2或a1=.
又a1>1,所以a1=2.
因为10Sn=(2an+1)(an+2),
所以10Sn=2a+5an+2,
故10an+1=10Sn+1-10Sn=2a+5an+1+2-2a-5an-2,
整理,得2(a-a)-5(an+1+an)=0,
即(an+1+an)[2(an+1-an)-5]=0.
因为{an}是递增数列且a1=2,
所以an+1+an≠0,因此an+1-an=.
所以数列{an}是以2为首项,为公差的等差数列,
所以an=2+(n-1)=(5n-1).
(2)满足条件的正整数m,n,k不存在,理由如下:
假设存在m,n,k∈N*,使得2(am+an)=ak,
则5m-1+5n-1=(5k-1),
整理,得2m+2n-k=,(*)
显然,(*)式左边为整数,所以(*)式不成立.
故满足条件的正整数m,n,k不存在.
由莲山课件提供http://www.5ykj.com/ 资源全部免费