由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(六) 等差数列与等比数列(小题练)
A级——12+4提速练
一、选择题
1.(2019届高三·合肥模拟)若等差数列{an}的前n项和为Sn,且满足a2+S3=4,a3+S5=12,则a4+S7的值是( )
A.20 B.36
C.24 D.72
解析:选C 由a2+S3=4及a3+S5=12得解得∴a4+S7=8a1+24d=24.故选C.
2.设等比数列的前n项和为Sn,若S1=a2-,S2=a3-,则公比q=( )
A.1 B.4
C.4或0 D.8
解析:选B ∵S1=a2-,S2=a3-,
∴解得或(舍去),故所求的公比q=4.
3.(2018·云南师大附中适应性考试)在各项均为正数的等比数列{an}中,a2,a3,a1成等差数列,则的值为( )
A. B.
C. D.
解析:选C 设{an}的公比为q且q>0,因为a2,a3,a1成等差数列,所以a1+a2=2×a3=a3,即a1+a1q=a1q2,因为a1≠0,所以q2-q-1=0,解得q=或q=0,又Sn=Sm+am+1+…+an,显然Sn>an.故选C.
10.(2018·西安八校联考)设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足SnSn+1S7>S5,得S7=S6+a7S5,所以a70,所以{an}为递减数列,又S13==13a70,所以S12S130,且an=·qn-1,又S3+a3,S5+a5,S4+a4成等差数列,所以2(S5+a5)=S3+a3+S4+a4,即2(a1+a2+a3+a4+2a5)=a1+a2+2a3+a1+a2+a3+2a4,化简得4a5=a3,从而4q2=1,解得q=±,又q>0,故q=
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,an=,选择A.
二、填空题
13.(2018·重庆模拟)在各项均为正数的等比数列{an}中,若a5=5,则log5a1+log5a2+…+log5a9=________.
解析:因为数列{an}是各项均为正数的等比数列,所以由等比数列的性质可得a1·a9=a2·a8=a3·a7=a4·a6=a=52,则log5a1+log5a2+…+log5a9=log5(a1·a2·…·a9)=log5[(a1·a9)·(a2·a8)·(a3·a7)·(a4·a6)·a5]=log5a=log559=9.
答案:9
14.(2018·天津模拟)数列{an}满足a1+2a2+4a3+…+2n-1an=2n-1,且数列{an}的前n项和为Sn,若对任意的n∈N*,都有λ2