由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(十四) 概率与统计(大题练)
A卷——大题保分练
1.(2018·洛阳模拟)甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:
甲公司送餐员送餐单数频数表
送餐单数
38
39
40
41
42
天数
10
15
10
10
5
乙公司送餐员送餐单数频数表
送餐单数
38
39
40
41
42
天数
5
10
10
20
5
(1)现从记录甲公司的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率;
(2)若将频率视为概率,回答下列两个问题:
①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望E(X);
②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.
解:(1)记抽取的3天送餐单数都不小于40为事件M,
则P(M)==.
(2)①设乙公司送餐员的送餐单数为a,
当a=38时,X=38×6=228,
当a=39时,X=39×6=234,
当a=40时,X=40×6=240,
当a=41时,X=40×6+1×7=247,
当a=42时,X=40×6+2×7=254.
所以X的所有可能取值为228,234,240,247,254.
故X的分布列为
X
228
234
240
247
254
P
所以E(X)=228×+234×+240×+247×+254×=241.8.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
②依题意,甲公司送餐员的日平均送餐单数为38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7,
所以甲公司送餐员的日平均工资为80+4×39.7=238.8元.
由①得乙公司送餐员的日平均工资为241.8元.
因为238.86.635,
所以有99%的把握认为是否爱好该项运动与性别有关.
(3)由题意,抽取6人中包括男生4名,女生2名,X的取值为0,1,2,
则P(X=0)==,
P(X=1)==,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
P(X=2)==,
故X的分布列为
X
0
1
2
P
E(X)=0×+1×+2×=1.
3.(2019届高三·山西八校联考)某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万元)的数据如下:
年份
2012
2013
2014
2015
2016
2017
2018
广告费
支出x
1
2
4
6
11
13
19
销售量y
1.9
3.2
4.0
4.4
5.2
5.3
5.4
(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程;
(2)若用y=c+d模型拟合y与x的关系,可得回归方程=1.63+0.99,经计算线性回归模型和该模型的R2分别约为0.75和0.88,请用R2说明选择哪个回归模型更好;
(3)已知利润z与x,y的关系为z=200y-x.根据(2)的结果回答下列问题:
①广告费x=20时,销售量及利润的预报值是多少?
②广告费x为何值时,利润的预报值最大?(精确到0.01)
参考公式:回归直线=+x的斜率和截距的最小二乘估计分别为
=,=-.
参考数据:≈2.24.
解:(1)∵=8,=4.2,iyi=279.4,=708,
∴===0.17,=-=4.2-0.17×8=2.84,
∴y关于x的线性回归方程为=0.17x+2.84.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)∵0.751,则k0,
故符合条件的点的坐标为(6,7),(8,10),(10,12),故ξ的所有可能取值为1,2,3,
P(ξ=1)==,P(ξ=2)===,P(ξ=3)==,
故ξ的分布列为
ξ
1
2
3
P
故E(ξ)=1×+2×+3×==.
3.(2018·辽宁五校联考)某校高三年级有500名学生,一次考试的英语成绩服从正态分布N(100,17.52),数学成绩的频率分布直方图如下:
(1)如果成绩高于135分的为特别优秀,则本次考试英语、数学成绩特别优秀的学生大约各多少人?
(2)试问本次考试英语和数学的平均成绩哪个较高,并说明理由;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)如果英语和数学两科成绩都特别优秀的共有6人,从(1)中的这些学生中随机抽取3人,设3人中两科成绩都特别优秀的有ξ人,求ξ的分布列和数学期望.
参考公式及数据:
若X~N(μ,σ2),则P(μ-σ