2019届高考数学(理)冲刺大题提分:课时跟踪检测(打包28套,含答案)
加入VIP免费下载

本文件来自资料包: 《2019届高考数学(理)冲刺大题提分:课时跟踪检测(打包28套,含答案)》 共有 29 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 课时跟踪检测(九) 空间几何体的三视图、表面积与体积及空间线面位置关系的判定(小题练)‎ A级——12+4提速练 一、选择题 ‎1.(2018·广州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是(  )‎ 解析:选D 由题意可得该几何体可能为四棱锥,如图所示,其高为2,底面为正方形,面积为2×2=4,因为该几何体的体积为×4×2=,满足条件,所以俯视图可以为D.‎ ‎2.(2018·陕西模拟)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥CABD的正视图与俯视图如图所示,则侧视图的面积为(  )‎ A. B. ‎ C. D. 解析:选D 由三棱锥CABD的正视图、俯视图得三棱锥CABD的侧视图为直角边长是的等腰直角三角形,其形状如图所示,所以三棱锥CABD的侧视图的面积为,故选D.‎ ‎3.(2018·郑州一模)已知两条不重合的直线m,n和两个不重合的平面α,β,m⊥α,n⊂β.给出下列四个命题:‎ ‎①若α∥β,则m⊥n;②若m⊥n,则α∥β;‎ ‎③若m∥n,则α⊥β;④若α⊥β,则m∥n.‎ 其中正确命题的个数是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.0          B.1‎ C.2 D.3‎ 解析:选C 依题意,对于①,由“若一条直线与两个平行平面中的一个垂直,则该直线也垂直于另一个平面”得知,m⊥β,又n⊂β,因此m⊥n,①正确;对于②,当α⊥β时,设α∩β=n,在平面β内作直线m⊥n,则有m⊥α,因此②不正确;对于③,由m∥n,m⊥α得n⊥α,又n⊂β,因此有α⊥β,③正确;对于④,当m⊥α,α∩β=n,α⊥β时,直线m,n不平行,因此④不正确.综上所述,正确命题的个数为2,故选C.‎ ‎4.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为(  )‎ A.3 B. C.7 D. 解析:选B 由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为,故该几何体的体积V=4-=.‎ ‎5.(2018·长郡中学模拟)某几何体的三视图如图所示,其俯视图中的曲线部分为半圆,则该几何体的体积是(  )‎ A.192+96π B.256+96π C.192+100π D.256+100π 解析:选C 题中的几何体是由一个直三棱柱和一个半圆柱构成的几何体,其中直三棱柱的底面是两直角边分别为8和6的直角三角形,高为8,该半圆柱的底面圆的半径为5,高为8,因此该几何体的体积为×8×6×8+π×52×8=192+100π,选C.‎ ‎6.(2018·贵阳模拟)某几何体的三视图如图所示(粗线部分),正方形网格的边长为1,该几何体的顶点都在球O的球面上,则球O的表面积为(  )‎ A.15π B.16π 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 C.17π D.18π 解析:选C 由题中的三视图可知,该几何体为如图所示的三棱锥D1BCD,将其放在长方体ABCDA1B‎1C1D1中,则该几何体的外接球即长方体的外接球,长方体的长、宽、高分别为2,2,3,长方体的体对角线长为=,球O的直径为,所以球O的表面积S=17π,故选C.‎ ‎7.(2018·石家庄模拟)如图是某四棱锥的三视图,其中正视图是边长为2的正方形,侧视图是底边分别为2和1的直角梯形,则该几何体的体积为(  )‎ A. B. C. D. 解析:选A 记由三视图还原后的几何体为四棱锥ABCDE,将其放入棱长为2的正方体中,如图,其中点D,E分别为所在棱的中点,分析知平面ABE⊥平面BCDE,点A到直线BE的距离即四棱锥的高,设为h,在△ABE中,易知AE=BE=,cos∠ABE=,则sin∠ABE=,所以h=,故四棱锥的体积V=×2××=,故选A.‎ ‎8.(2018·全国卷Ⅱ)在长方体ABCDA1B‎1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为(  )‎ A.     B.    ‎ C.     D. 解析:选C 如图,在长方体ABCDA1B‎1C1D1的一侧补上一个相同的长方体EFBAE‎1F1B‎1A1.连接B‎1F,由长方体性质可知,B‎1F∥AD1,所以∠DB‎1F为异面直线AD1与DB1所成的角或其补角.连接DF,由题意,得DF=‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 =,FB1==2,DB1==.‎ 在△DFB1中,由余弦定理,得DF2=FB+DB-2FB1·DB1·cos∠DB‎1F,即5=4+5-2×2××cos∠DB‎1F,∴cos∠DB‎1F=.‎ ‎9.已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2,且四棱锥OABCD的体积为8,则R等于(  )‎ A.4          B.2 C. D. 解析:选A 如图,设矩形ABCD的中心为E,连接OE,EC,由球的性质可得OE⊥平面ABCD,所以VOABCD=·OE·S矩形ABCD=×OE×6×2=8,所以OE=2,在矩形ABCD中可得EC=2,则R===4,故选A.‎ ‎10.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )‎ A.2+4+2 B.2+2+4 C.2+6 D.8+4 解析:选A 由三视图知该几何体为三棱锥,记为三棱锥PABC,将其放在棱长为2的正方体中,如图所示,其中AC⊥BC,PA⊥AC,PB⊥BC,△PAB是边长为2的等边三角形,故所求表面积为S△ABC+S△PAC+S△PBC+S△PAB=×2×2+×2×2+×2×2+×(2)2=2+4+2.故选A.‎ ‎11.(2018·唐山模拟)把一个皮球放入如图所示的由8根长均为‎20 cm的铁丝接成的四棱锥形骨架中,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为(  )‎ A.‎10 cm B.‎‎10 cm C.‎10 cm D.‎‎30 cm 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解析:选B 依题意,在四棱锥SABCD中,所有棱长均为‎20 cm,连接AC,BD交于点O,连接SO,则SO=AO=BO=CO=DO=‎10 cm,易知点O到AB,BC,CD,AD的距离均为‎10 cm,在等腰三角形OAS中,OA=OS=‎10 cm,AS=‎20 cm,所以O到SA的距离d=‎10 cm,同理可证O到SB,SC,SD的距离也为‎10 cm,所以球心为四棱锥底面ABCD的中心,所以皮球的半径r=‎10 cm,选B.‎ ‎12.(2018·广州模拟)正方体ABCDA1B‎1C1D1的棱长为2,点M为CC1的中点,点N为线段DD1上靠近D1的三等分点,平面BMN交AA1于点Q,则线段AQ的长为(  )‎ A. B. C. D. 解析:选D 如图所示,在线段DD1上靠近点D处取一点T,使得DT=,因为N是线段DD1上靠近D1的三等分点,故D1N=,故NT=2--=1,因为M为CC1的中点,故CM=1,连接TC,由NT∥CM,且CM=NT=1,知四边形CMNT为平行四边形,故CT∥MN,同理在AA1上靠近点A处取一点Q′,使得AQ′=,连接BQ′,TQ′,则有BQ′∥CT∥MN,故BQ′与MN共面,即Q′与Q重合,故AQ=,选D.‎ 二、填空题 ‎13.(2018·南京模拟)在四棱锥PABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,PA=2,E为AB的中点,则三棱锥PBCE的体积为________.‎ 解析:由题意知S底面ABCD=2×2sin 60°=2,所以S△EBC=,故VPEBC=×2×=.‎ 答案: ‎14.(2018·内蒙古包头一模)已知直线a,b,平面α,且满足a⊥α,b∥α,有下列四个命题:‎ ‎①对任意直线c⊂α,有c⊥a;‎ ‎②存在直线c⊄α,使c⊥b且c⊥a;‎ ‎③对满足a⊂β的任意平面β,有β∥α;‎ ‎④存在平面β⊥α,使b⊥β.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 其中正确的命题有________.(填序号)‎ 解析:因为a⊥α,所以a垂直于α内任一直线,所以①正确;由b∥α得α内存在一直线l与b平行,在α内作直线m⊥l,则m⊥b,m⊥a,再将m平移得到直线c,使c⊄α即可,所以②正确;由面面垂直的判定定理可得③不正确;若b⊥β,则由b∥α得α内存在一条直线l与b平行,必有l⊥β,即有α⊥β,而满足b⊥β的平面β有无数个,所以④正确.‎ 答案:①②④‎ ‎15.(2019届高三·益阳、湘潭联考)已知三棱锥SABC的顶点都在球O的球面上,△ABC是边长为3的正三角形,SC为球O的直径,且SC=4,则此三棱锥的体积为________.‎ 解析:如图,设O1为△ABC的中心,连接OO1,故三棱锥SABC的高h=2OO1,三棱锥SABC的体积V=×2OO1×S△ABC,因为OO1==1,所以V=×2×1××32=.‎ 答案: ‎16.(2018·全国卷Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为________.‎ 解析:如图,∵SA与底面成45°角,∴△SAO为等腰直角三角形.设OA=r,则SO=r,SA=SB=r.在△SAB中,cos∠ASB=,∴sin∠ASB=,∴S△SAB=SA·SB·sin∠ASB=×(r)2×=5,解得r=2,∴SA=r=4,即母线长l=4,∴S圆锥侧=πrl=π×2×4=40π.‎ 答案:40π B级——难度小题强化练 ‎1.(2018·武汉调研)已知底面半径为1,高为的圆锥的顶点和底面圆周都在球O的球面上,则球O的表面积为(  )‎ A. B.4π C. D.12π 解析:选C 如图,△ABC为圆锥的轴截面,O为其外接球的球心,设外接球的半径为R,连接OB,OA,并延长AO交BC于点D,则AD⊥BC 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,由题意知,AO=BO=R,BD=1,AD=,则在Rt△BOD中,有R2=(-R)2+12,解得R=,所以外接球O的表面积S=4πR2=,故选C.‎ ‎2.(2018·南京模拟)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为(  )‎ A. B. C.2 D. 解析:选A 由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥ABCD所示,故该几何体的体积V=××1×2×2=.‎ ‎3.(2018·福州模拟)已知圆柱的高为2,底面半径为,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于(  )‎ A.4π B.π C.π D.16π 解析:选D 如图,由题意知圆柱的中心O为这个球的球心,于是球的半径r=OB===2.故这个球的表面积S=4πr2=16π.故选D.‎ ‎4.(2018·贵阳检测)三棱锥PABC的四个顶点都在体积为的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为(  )‎ A.4 B.6‎ C.8 D.10‎ 解析:选C 依题意,设题中球的球心为O,半径为R,△ABC的外接圆半径为r,则=,解得R=5,由πr2=16π,解得r=4,又球心O到平面ABC的距离为=3,因此三棱锥PABC的高的最大值为5+3=8,故选C.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎5.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为(  )‎ A. B. C. D. 解析:选A 如图所示,在正方体ABCDA1B‎1C1D1中,平面AB1D1与棱A‎1A,A1B1,A1D1所成的角都相等,又正方体的其余棱都分别与A‎1A,A1B1,A1D1平行,故正方体ABCDA1B‎1C1D1的每条棱所在直线与平面AB1D1所成的角都相等.如图所示,取棱AB,BB1,B‎1C1,C1D1,D1D,DA的中点E,F,G,H,M,N,则正六边形EFGHMN所在平面与平面AB1D1平行且面积最大,此截面面积为S正六边形EFGHMN=6××××sin 60°=.故选A.‎ ‎6.(2018·南宁模拟)如图,在正方形ABCD中,AC为对角线,E,F分别是BC,CD的中点,G是EF的中点.现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H.下列说法错误的是________(将符合题意的序号填到横线上).‎ ‎①AG⊥△EFH所在平面; ②AH⊥△EFH所在平面;‎ ‎③HF⊥△AEF所在平面; ④HG⊥△AEF所在平面.‎ 解析:根据折叠前AB⊥BE,AD⊥DF可得折叠后AH⊥HE,AH⊥HF,HE∩HF=H,可得AH⊥平面EFH,即②正确;∵过点A只有一条直线与平面EFH垂直,∴①不正确;∵AG⊥EF,AH⊥EF,AH∩AG=A,∴EF⊥平面HAG,∴平面HAG⊥平面AEF.过H作直线垂直于平面AEF,该直线一定在平面HAG内,∴③不正确;∵HG不垂直AG,∴HG⊥平面AEF不正确,④不正确,综上,说法错误的序号是①③④.‎ 答案:①③④‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料