由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(十七) 圆锥曲线的方程与性质 (小题练)
A级——12+4提速练
一、选择题
1.(2018·广西南宁模拟)双曲线-=1的渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:选D 在双曲线-=1中,a=5,b=2,∴其渐近线方程为y=±x,故选D.
2.(2018·福州模拟)已知双曲线C的两个焦点F1,F2都在x轴上,对称中心为原点O,离心率为.若点M在C上,且MF1⊥MF2,M到原点的距离为,则C的方程为( )
A.-=1 B.-=1
C.x2-=1 D.y2-=1
解析:选C 由题意可知,OM为Rt△MF1F2斜边上的中线,所以|OM|=|F1F2|=c.由M到原点的距离为,得c=,又e==,所以a=1,所以b2=c2-a2=3-1=2.故双曲线C的方程为x2-=1.故选C.
3.已知椭圆C的方程为+=1(m>0),如果直线y=x与椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点F,则m的值为( )
A.2 B.2
C.8 D.2
解析:选B 根据已知条件得c=,则点在椭圆+=1(m>0)上,∴+=1,可得m=2.
4.已知抛物线C:y2=4x的焦点为F,准线为l.若射线y=2(x-1)(x≤1)与C,l分别交于P,Q两点,则=( )
A. B.2
C. D.5
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:选C 由题意,知抛物线C:y2=4x的焦点F(1,0),设准线l:x=-1与x轴的交点为F1.过点P作直线l的垂线,垂足为P1(图略),由得点Q的坐标为(-1,-4),所以|FQ|=2.又|PF|=|PP1|,所以====,故选C.
5.(2018·湘东五校联考)设F是双曲线-=1(a>0,b>0)的一个焦点,过F作双曲线一条渐近线的垂线,与两条渐近线分别交于P,Q,若=3,则双曲线的离心率为( )
A. B.
C. D.
解析:选C 不妨设F(-c,0),过F作双曲线一条渐近线的垂线,可取其方程为y=(x+c),与y=-x联立可得xQ=-,与y=x联立可得xP=,∵ =3,∴+c=3,∴a2c2=(c2-2a2)·(2c2-3a2),两边同时除以a4得,e4-4e2+3=0,∵e>1,∴e=.故选C.
6.(2019届高三·山西八校联考)已知双曲线-=1(a>0,b>0)的焦距为4,渐近线方程为2x±y=0,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:选A 法一:易知双曲线-=1(a>0,b>0)的焦点在x轴上,所以由渐近线方程为2x±y=0,得=2,因为双曲线的焦距为4,所以c=2,结合c2=a2+b2,可得a=2,b=4,所以双曲线的方程为-=1,故选A.
法二:易知双曲线的焦点在x轴上,所以由渐近线方程为2x±y=0,可设双曲线的方程为x2-=λ(λ>0),即-=1,因为双曲线的焦距为4,所以c=2,所以λ+4λ=20,λ=4,所以双曲线的方程为-=1,故选A.
7.过椭圆C:+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
于另一点B,且点B在x轴上的射影恰好为右焦点F.若0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为( )
A. B.
C. D.
解析:选B 由题意得,A(-a,0),B(0,b),由在线段AB上有且只有一个点P满足PF1⊥PF2,得点P是以点O为圆心,线段F1F2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
为直径的圆x2+y2=c2与线段AB的切点,连接OP,则OP⊥AB,且OP=c,即点O到直线AB的距离为c.又直线AB的方程为y=x+b,整理得bx-ay+ab=0,点O到直线AB的距离d==c,两边同时平方整理得,a2b2=c2(a2+b2)=(a2-b2)(a2+b2)=a4-b4,可得b4+a2b2-a4=0,两边同时除以a4,得2+-1=0,可得=,则e2===1-=1-=,故选B.
2.(2018·益阳、湘潭联考)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为( )
A.5 B.6
C. D.
解析:选C 法一:如图,设l与x轴交于点M,过点A作AD⊥l交l于点D,由抛物线的定义知,|AD|=|AF|=4,由F是AC的中点,知|AF|=2|MF|=2p,所以2p=4,解得p=2,抛物线的方程为y2=4x.设A(x1,y1),B(x2,y2),则|AF|=x1+=x1+1=4,所以x1=3,解得y1=2,所以A(3,2),又F(1,0),所以直线AF的斜率k==,所以直线AF的方程为y=(x-1),代入抛物线方程y2=4x,得3x2-10x+3=0,所以x1+x2=,|AB|=x1+x2+p=.故选C.
法二:同法一得抛物线的方程为y2=4x.设A(x1,y1),B(x2,y2),则|AF|=x1+=x1+1=4,所以x1=3,又x1x2==1,所以x2=,所以|AB|=x1+x2+p=.故选C.
3.(2018·长郡中学模拟)已知椭圆C:+=1,若直线l经过M(0,1),与椭圆交于A,B两点,且=-,则直线l的方程为( )
A.y=±x+1 B.y=±x+1
C.y=±x+1 D.y=±x+1
解析:选B 依题意,设直线l:y=kx+1,点A(x1,y1),B(x2,y2).则由消去y,整理得(9k2+5)x2+18kx-36=0,Δ=(18k)2+4×36×(9k2+5)>0,则由此解得k=±,即直线
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
l的方程为y=±x+1,故选B.
4.(2018·齐鲁名校联考)已知双曲线C过点A(2,),渐近线为y=±x,抛物线M的焦点与双曲线C的右焦点F重合,Q是抛物线上的点P在直线x=-4上的射影,点B(4,7),则|BP|+|PQ|的最小值为( )
A.6 B.5
C.-1+5 D.1+5
解析:选D 由题意,双曲线C的渐近线为y=±x,故可设双曲线C的方程为2-2=λ(λ≠0),即-=λ(λ≠0).又点A(2,)在双曲线上,所以-=λ,解得λ=1,故双曲线C的方程
为-=1,其右焦点为F(3,0),所以抛物线M的方程
为y2=12x.如图,作出抛物线M,其准线为x=-3,显然点B在抛物线的上方.设PQ与直线x=-3交于点H,连接PF,则由抛物线的定义可得|PH|=|PF|,所以|PQ|=|PH|+|QH|=|PF|+1,故|BP|+|PQ|=|BP|+|PF|+1,显然,当P为线段BF与抛物线的交点时,|BP|+|PQ|取得最小值,且最小值为|BF|+1=+1=5+1.所以|BP|+|PQ|的最小值为1+5.故选D.
5.(2018·沈阳模拟)已知抛物线y2=4x的一条弦AB恰好以P(1,1)为中点,则弦AB所在直线的方程是____________.
解析:设A(x1,y1),B(x2,y2),且x1≠x2,则y1+y2=2,
又点A,B在抛物线y2=4x上,
所以两式相减,得(y1+y2)(y1-y2)=4(x1-x2),则==2,
即直线AB的斜率k=2,
所以直线AB的方程为y-1=2(x-1),
即2x-y-1=0.
答案:2x-y-1=0
6.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-1,0),F2(1,0),P是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则·的最小值的取值范围是________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:设P(m,n),则-=1,
即m2=a2.
又F1(-1,0),F2(1,0),
则=(-1-m,-n),=(1-m,-n),
·=n2+m2-1=n2+a2-1
=n2+a2-1≥a2-1,
当且仅当n=0时取等号,
所以·的最小值为a2-1.
由2≤≤4,得≤a≤,
故-≤a2-1≤-,
即·的最小值的取值范围是.
答案:
由莲山课件提供http://www.5ykj.com/ 资源全部免费