由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(二十六) “专题六”补短增分(综合练)
A组——易错清零练
1.(2018·山东日照联考)已知函数f(x)=ln是奇函数,则实数a的值为( )
A.1 B.-1
C.1或-1 D.4
解析:选B 由题意知f(-x)=-f(x)恒成立,则ln=-ln,即+a=,解得a=-1.故选B.
2.已知f(x)是奇函数,且f(2-x)=f(x),当x∈(2,3)时,f(x)=log2(x-1),则当x∈(1,2)时,f(x)=( )
A.-log2(4-x) B.log2(4-x)
C.-log2(3-x) D.log2(3-x)
解析:选C 依题意得f(x+2)=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x).当x∈(1,2)时,x-4∈(-3,-2),-(x-4)∈(2,3),故f(x)=f(x-4)=-f(4-x)=-log2(4-x-1)=-log2(3-x),选C.
3.已知函数f(x)为R上的奇函数,且当x≥0时,f(x)=-ex+e-x-mcos x,记a=-2f(-2),b=-f(-1),c=3f(3),则a,b,c的大小关系是( )
A.b2时,G′(x)=ex-3>0,
∴G(x)在(2,+∞)上单调递增,
∴G(x)>G(2)=e2-6>0,
∴u′(x)>0在(2,+∞)上恒成立,
∴u(x)>u(2)=e2-6>0,∴当m>2时,g(m)>0.
又g(x2)=0,g(x)在(ln 2m,+∞)上单调递增,
∴m>x2.
故x1+ln4.001,即m=的近似代替值大于m,故选A.
5.(2018·陕西模拟)对于函数f(x)和g(x),设α∈{x|f(x)=0},β∈{x|g(x)=0},若存在α,β,使得|α-β|≤1,则称f(x)与g(x)互为“零点相邻函数”.若函数f(x
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点相邻函数”,则实数a的取值范围是( )
A.[2,4] B.
C. D.[2,3]
解析:选D ∵f′(x)=ex-1+1>0,∴f(x)=ex-1+x-2是增函数,又f(1)=0,∴函数f(x)的零点为x=1,∴α=1,∴|1-β|≤1,∴0≤β≤2,∴函数g(x)=x2-ax-a+3在区间[0,2]上有零点,由g(x)=0得a=(0≤x≤2),即a==(x+1)+-2(0≤x≤2),设x+1=t(1≤t≤3),则a=t+-2(1≤t≤3),令h(t)=t+-2(1≤t≤3),易知h(t)在区间[1,2)上是减函数,在区间(2,3]上是增函数,∴2≤h(t)≤3,即2≤a≤3,故选D.
6.设函数f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时,f(x)≥0,求a的取值范围.
解:(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)0.故f(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).
(2)当x=0时,f(x)=0,对任意实数a,均有f(x)≥0;
当x>0时,f(x)≥0等价于a≤,
令g(x)=(x>0),则g′(x)=,
令h(x)=xex-2ex+x+2(x>0),
则h′(x)=xex-ex+1,h″(x)=xex>0,
知h′(x)在(0,+∞)上为增函数,h′(x)>h′(0)=0,知h(x)在(0,+∞)上为增函数,h(x)>h(0)=0,
∴g′(x)>0,g(x)在(0,+∞)上为增函数.
由洛必达法则知, == =,故a≤.综上,知a的取值范围为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费