北师大版七年级数学下册教案全套(共26份)
加入VIP免费下载

本文件来自资料包: 《北师大版七年级数学下册教案全套(共26份)》 共有 26 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2 探索轴对称的性质 【教学目标】 1.知识与技能 (1)进一步复习生活中的轴对称现象,探索轴对称的性质; (2)掌握轴对称的性质,会利用轴对称的性质解决问题。 2.过程与方法 在探索轴对称性质的过程中,能够进行有条理的思考并进行简单的推理。 3.情感态度和价值观 学生在自主探索获得正确的学习方式和良好的情感体验。 【教学重点】 探索轴对称的性质。 【教学难点】 利用轴对称的性质解决问题。 【教学方法】 自学与小组合作学习相结合的方法。 【课前准备】 教学课件。 【课时安排】 1 课时 【教学过程】 一、复习导入 【过渡】上节课,我们学习了轴对称现象,通过对生活中的轴对称现象的欣赏,我们了解了轴对称图 形,以及两个图形成轴对称。在我们的生活中,除了建筑、剪纸等艺术可以看到轴对称现象之外呢, 我们的汉字也会有这样的轴对称现象。现在,我们来看几个字的一部分,大家来猜一下是什么字。 【过渡】大家能猜到这是什么字吗?一起来试一下吧。 (学生回答)【过渡】这几个字呢,就是成轴对称的图形。那么,轴对称到底有哪些性质呢?今天我们就来 探究一下。 二、新课教学 1.探索轴对称的性质 【过渡】现在,请大家拿出一张纸,将这张纸对折,然后用笔尖扎出 14 这个数字,将纸打开后 铺平。 【过渡】结合你们刚刚的动手过程,我们来看一下下边几个问题吧。 (1)两个“14”有什么关系? 【过渡】大家可以再将手中的纸对折,这两个“14”能够完全重合吗? (学生回答) 【过渡】结合上节课的学习,我们能够回答这个问题,这两个“14” 成轴对称图形.。 (2)设折痕所在直线为 l,连接点 E 和 E′的线段和 l 有什么关系?点 F 和 F′呢? 【过渡】对折过后,我们能够发现,点 E 和 E′重合,大家动手连接 E E′,再对折一次,你们 能发现什么呢? 【过渡】我们发现,线段 E E′与对称轴 l 形成的两个角也是重合的,我们知道这两个角总共有 180°,那么分别的两个角就是 90°。因此,我们知道,线段 EE’与直线 l 垂直。 【过渡】同样地,线段 FF’与直线 l 垂直。 【过渡】接下来,我们来看第三个问题。 (3)线段 AB 与 A′B′,CD 与 C′D′有什么关系? 【过渡】很明显,对折过后,线段 AB 与 A′B′,CD 与 C′D′都是重合的,因此,我们能够知道, AB=A′B′,CD=C′D′。 (4)∠1 与∠2 有什么关系?∠3 与∠4 呢? 【过渡】我们动手将这几个角标出来,然后再一次结合对折。谁能告诉我答案。 (学生回答) 【过渡】∠1=∠2,∠3=∠4。【过渡】通过这个小实验,我们初步了解了轴对称的性质,那究竟是不是所有的轴对称都具有这 的性质呢?我们再来看一个例子。 【过渡】课本的图 5-6 所示的一个轴对称图形。 【过渡】接下来的几个问题,大家一块来解决一些吧。 (1)找出它的对称轴。 课件展示 【过渡】将对称轴画出之后,我们能够看到对称轴左右的两个部分是明显对称的。 (2)连接点 A 与点 A1 的线段与对称轴有什么关系?连接点 B 与点 B1 的线段呢? 【过渡】在这里,我们结合刚刚的例子,我们知道,将其对折之后,A 与 A1 重合,因此,我们就 可以这样称点 A 关于对称轴的对应点是 A1,同样的,B 与 B1 重合,称点 B 关于对称轴的对应点是 B1。 连接 AA1,BB1,这两个线段分别与对称轴垂直。 (3)线段 AD 与线段 A1D1 有什么关系?线段 BC 与 B1C1 呢?为什么? 【过渡】沿对称轴对折,AD 与 A1D1 重合,称线段 AD 关于对称轴的对应线段是 A1D1,BC 与 B1C1 重 合,称线段 BC 关于对称轴的对应线段是 B1C1。由于重合,我们知道,AD=A1D1,BC=B1C1。 (4)∠1 与∠2 有什么关系?∠3 与∠4 呢?说说你的理由? 【过渡】对折,∠1 与∠2,∠3 与∠4 分别重合,我们就称∠1 关于对称轴的对应角是∠2,∠3 关于对称轴的对应角是∠4。而且结合重合的特点,我们知道,∠1=∠2,∠3=∠4。 【过渡】通过刚刚的分析,你能总结,你能得到什么结论? 轴对称的性质: 在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等, 对应角相等。 【过渡】利用轴对称的性质,我们就可以解决问题,首先,我们来看一下课本做一做的内容。 如图是一个图案的一半,其中的虚线是这个图案的对称轴,画出这个图案的另一半。【过渡】根据轴对称的性质,确定不在对称轴上的两点的对应点的位置。 课件展示解题过程。 【过渡】在探索了轴对称的相关性质之后,我们来看几个例题吧。 例:例:请在直线 l 上找一个点 C,使 CA+CB 最小。 【过渡】对于这个问题,我们需要知道,两点之间,线段最短。因此,提供给我们的思路就是寻 找一条直线,再根据轴对称的性质,我们就能很轻易的找到这个点。 课件展示解题过程。 【过渡】在直线 L 上的同侧有两个点 A、B,在直线 L 上有到 A、B 的距离之和最短的点存在,可 以通过轴对称来确定,即作出其中一点关于直线 L 的对称点,对称点与另一点的连线与直线 L 的交点 就是所要找的点。 【过渡】接下来,我们看另外一个例题。 例:如图所示,AD 为△ABC 的高,∠B=2∠C,借助于轴对称的性质想一想,CD 与 AB+BD 相等吗? 请说明你的理由。 【过渡】对这个问题进行分析。首先,我们知道要求使用轴对称的性质。但是观察这个图形,并 没有轴对称的存在。这就需要我们添加辅助线。结合图形及轴对称的性质,我们发现,AD⊥BC,这就 给我们启示,是否可以将 AD 作为对称轴?那么我们就需要结合轴对称的性质,找到其平分的线段, 辅助线的做法也就清楚了。 课件展示解题过程。 【学以致用】1、如图,由四个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点.在 田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC 本身)共有( C )A. 1 个 B. 2 个 C. 3 个 D. 4 个 2、作△ABC 关于直线 l 对称的△A′B′C′,点 A,B,C 的对称点分别是 A′,B′,C′,则下 列说法中正确的是( B ) A. AA′垂直平分对称轴 B. △ABC 和△A′B′C′的周长相等 C. 线段 AB′被对称轴平分 D. △ABC 的面积被对称轴平分 3、如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线 l 对称,则∠B= 90° 。 4、如图,P 为∠AOB 内的一点,分别作出点 P 关于 OA、OB 的对称点 P1、P2,连结 P1、P2,交 OA 于 M,交 OB 于 N,若 P1P2=13cm,求△MNP 的周长? 解:∵点 P 关于 OA、OB 的对称点 P1、P2, ∴PM=P1M,PN=P2N, ∴△MNP 的周长等于 P1P2=13cm。 5、如图,∠A=90°,E 为 BC 上一点,A 点和 E 点关于 BD 对称,B 点、C 点关于 DE 对称,求∠ABC 和∠C 的度数.解:∵A 点和 E 点关于 BD 对称, ∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD. 又 B 点、C 点关于 DE 对称, ∴∠DBE=∠C,∠ABC=2∠C. ∵∠A=90°, ∴∠ABC+∠C=2∠C+∠C=3∠C=90°。 ∴∠C=30° ∴∠ABC=2∠C=60°。 【板书设计】 1、轴对称的性质: 对应点所连的线段被对称轴垂直平分 对应线段相等 对应角相等 【教学反思】 通过大量的动手操作,力图让学生用自己的思维方式自由开放地去探索、去发现、去创造,使学 生通过大量的感性经验形成表象,进一步体会轴对称的含义。通过动手探索,掌握轴对称图形的性质, 感受对称图形的内在美。

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料