空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.
(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).
一、空间几何体的结构
1.多面体
几何体
结构特征
备注
棱柱
①底面互相平行.
②侧面都是平行四边形.
③每相邻两个平行四边形的公共边互相平行.
按侧棱与底面是否垂直分类,可分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱,侧棱垂直于底面的棱柱叫做直棱柱.特别地,底面是正多边形的直棱柱叫做正棱柱.
棱锥
①底面是多边形.
②侧面都是三角形.
③侧面有一个公共顶点.
三棱锥的所有面都是三角形,所以四个面都可以看作底.三棱锥又称为四面体.
棱台
①上、下底面互相平行,且是相似图形.
②各侧棱的延长线交于一点.
③各侧面为梯形.
可用一个平行于棱锥底面的平面去截棱锥
2.旋转体
几何体
结构特征
备注
圆柱
①圆柱有两个大小相同的底面,这两个面互相平行,且底面是圆面而不是圆.
②圆柱有无数条母线,且任意一条母线都与圆柱的轴平行,所以圆柱的任意两条母线互相平行且相等.
③平行于底面的截面是与底面大小相同的圆面,过轴的截面(轴截面)是全等的矩形.
圆柱可以由矩形绕其任一边所在直线旋转得到.
圆锥
①底面是圆面.
②有无数条母线,长度相等且交于顶点.
③平行于底面的截面是与底面大小不同的圆面,过轴的截面(轴截面)是全等的等腰三角形.
圆锥可以由直角三角形绕其直角边所在直线旋转得到.
圆台
①圆台上、下底面是互相平行且不等的圆面.
②有无数条母线,等长且延长线交于一点.
③平行于底面的截面是与两底面大小都不等的圆面,过轴的截面(轴截面)是全等的等腰梯形.
圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.
球
①球心和截面圆心的连线垂直于截面.
②球心到截面的距离d与球的半径R及截面圆的半径r之间满足关系式:.
球可以由半圆面或圆面绕直径所在直线旋转得到.
二、空间几何体的三视图与直观图
1.空间几何体的三视图
(1)三视图的概念
①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;
②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;
③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.
几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.
(2)三视图的画法规则
①排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边.如下图:
正
侧
俯
②画法规则
ⅰ)正视图与俯视图的长度一致,即“长对正”;
ⅱ)侧视图和正视图的高度一致,即“高平齐”;
ⅲ)俯视图与侧视图的宽度一致,即“宽相等”.
③线条的规则
ⅰ)能看见的轮廓线用实线表示;
ⅱ)不能看见的轮廓线用虚线表示.
(3)常见几何体的三视图
常见几何体
正视图
侧视图
俯视图
长方体
矩形
矩形
矩形
正方体
正方形
正方形
正方形
圆柱
矩形
矩形
圆
圆锥
等腰三角形
等腰三角形
圆
圆台
等腰梯形
等腰梯形
两个同心的圆
球
圆
圆
圆
2.空间几何体的直观图
(1)斜二测画法及其规则
对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:
①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.
②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.
③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.
(2)用斜二测画法画空间几何体的直观图的步骤
①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox,Oy,再作Oz轴使∠xOz=90°,且∠yOz=90°.
②画直观图时,把它们画成对应的轴O′x′,O′y′,O′z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确定的平面表示水平平面.
③已知图形中,平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴、y′轴或z′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.
④已知图形中平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半.
⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.
(3)直观图的面积与原图面积之间的关系
①原图形与直观图的面积比为,即原图面积是直观图面积的倍,
②直观图面积是原图面积的倍.
考向一 空间几何体的结构特征
关于空间几何体的结构特征问题的注意事项:
(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.
(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.
典例1 给出下列四个命题:
①各侧面都是全等四边形的棱柱一定是正棱柱;
②对角面是全等矩形的六面体一定是长方体;
③若棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;
④长方体一定是正四棱柱.
其中正确的命题个数是
A.0 B.1
C.2 D.3
【答案】A
1.正三棱锥内有一个内切球,经过棱锥的一条侧棱和高作截面,正确的图是
典例2 边长为5 cm的正方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是
A.10 cm B. cm
C. cm D. cm
【答案】D
【名师点睛】求几何体的侧面上两点间的最短距离问题,常常把侧面展开,转化为平面几何问题处理.
2.已知正三棱柱的底面边长为1,侧棱长为2,为的中点,则从拉一条绳子绕过侧棱到达点的最短绳长为
A. B.
C. D.
考向二 空间几何体的三视图
三视图问题的常见类型及解题策略:
(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.
(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.
(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.
典例3 如图所示,在放置的四个几何体中,其正视图为矩形的是
A B C D
【答案】B
【解析】A选项三棱锥、C选项圆台、D选项的正视图都不是矩形,而B选项圆柱的正视图为矩形.故选B.
3.如图,在正方体中,分别为棱的中点,用过点的平面截去该正方体的上半部分,则剩余几何体(下半部分)的侧视图为
典例4 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是
A.三棱锥 B.三棱柱
C.四棱锥 D.四棱柱
【答案】B
4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为
A. B.
C. D.
考向三 空间几何体的直观图
斜二测画法中的“三变”与“三不变”:
“三变”;
“三不变”.
典例5 如图是水平放置的平面图形的直观图,则原平面图形的面积为
A.3 B.
C.6 D.
【答案】C
【方法点晴】本题主要考查了平面图形的直观图及其原图形与直观图面积之间的关系,属于基础题,解答的关键是牢记原图形与直观图的面积比为,即原图面积是直观图面积的倍,直观图面积是原图面积的倍.
5.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中, ,,则直角梯形边的长度是
A. B.
C. D.
1.有下列三个说法:
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②有两个面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
其中正确的有
A.0个 B.1个
C.2个 D.3个
2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的正视图为
A B C D
3.某空间几何体的正视图是三角形,则该几何体不可能是
A.圆柱 B.圆锥
C.四面体 D.三棱柱
4.某正四棱锥的正(主)视图和俯视图如图所示,则该正四棱锥的侧棱长是
A. B.
C. D.
5.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是
A. B.
C. D.
6.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆中的
A.①② B.②③
C.③④ D.①④
7.一个四面体的顶点在空间直角坐标系中的坐标分别是,绘制该四面体的三视图时,按照如下图所示的方向画正视图,则得到的正视图为
A. B.
C. D.
8.已知用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是,则棱台的高是
A. B.
C. D.
9.一个正方体的内切球、外接球、与各棱都相切的球的半径之比为
A. B.
C. D.
10.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某几何体的三视图,该几何体的各个面中有若干个是梯形,则这些梯形的面积之和为
A.28 B.30
C.32 D.36
11.长方体中,,,设点关于直线的对称点为,则与两点之间的距离是
A. B.
C. D.
12.某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为
A. B.
C. D.
13.如图所示,E,F分别为正方体ABCD-A'B'C'D'的面ADD'A'、面BCC'B'的中心,现给出图①~④的4个平面图形,则四边形BFD'E在该正方体的面上的射影可能是图 .(填上所有正确图形对应的序号)
14.如图所示是一个几何体的表面展开平面图,该几何体中与“数”字面相对的是“ ”.
15.已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有_____________.(填序号)
16.一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积为____________.
17.正三棱锥P−ABC中,,,AB的中点为M,一小蜜蜂沿锥体侧面由M 爬到C点,最短路程是____________.
1.(2018新课标全国Ⅰ理科)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为
A. B.
C.3 D.2
2.(2018新课标全国Ⅲ理科)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
3.(2017新课标全国Ⅰ理科)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为
A.10 B.12
C.14 D.16
4.(2017北京理科)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
A.3 B.2
C.2 D.2
1.【答案】C
【解析】正三棱锥的内切球与各个面的切点为正三棱锥各面的中心,所以过一条侧棱和高的截面必过该棱所对的面的高线,故C正确.
4.【答案】B
【解析】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,
在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长、宽、高分别为2,1,1的长方体的体对角线,为=,故选B.
5.【答案】B
【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,则原高为,而横向长度不变,且梯形是直角梯形,如图,
,故选B.
1.【答案】A
【解析】本题主要考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.
2.【答案】D
【解析】所得几何体的正视图为一个长方形,且有一条从左下到右上的对角线,如下所示:
故选D.
5.【答案】A
【解析】根据斜二测画法知,平行于x轴的线段长度不变,平行于y的线段变为原来的,
由此得原来的图形是A.故选A.
6.【答案】B
【解析】若俯视图为正方形,则正视图中的边长不成立;若俯视图为圆,则正视图中的边长也不成立.所以其俯视图不可能为②正方形;③圆,故选B.
7.【答案】D
【解析】根据空间直角坐标系中点的位置,画出直观图如图,则正视图为D中图形.故选D.
【方法点睛】球与几何体的组合体的问题,尤其是相切,一般不画组合体的直观图,而是画切面图,圆心到切点的距离是半径并且垂直,如果是内切球,那么对面切点的距离就是直径,而对面切点的距离是棱长,如果与棱相切,那么对棱切点的距离就是直径,而切点在棱的中点,所以对棱中点的距离等于面对角线长,而如果外接球,那么相对顶点的距离就是直径,即正方体的体对角线是直径.
10.【答案】C
【解析】由三视图可知该几何体如图所示,各个面中有两个梯形,一个矩形,两个直角三角形,则这两个梯形的面积和为.故选C.
11.【答案】A
12.【答案】C
【解析】由三视图可知:原三棱锥为,其中,,如图,∴这个三棱锥最长棱的棱长是.故选C.
13.【答案】②③
【解析】四边形BFD'E在正方体ABCD-A'B'C'D'的面BCC'B'上的射影是③;在面ABCD上的射影是②;易知①④的情况不可能出现.
14.【答案】学
【解析】由图形可知,该几何体为三棱台,两个三角形为三棱台的上下底面,∴与“数”字面相对的是“学”.
15.【答案】①②③④
16.【答案】
【解析】由题意得,水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,其面积为,
又原图形与直观图的面积比为,
所以原图形的面积为.
17.【答案】
【解析】由题意,将侧面PBC展开,那么点M到C的距离,就是在中的长度,由题中数据易得,,,如果将侧面PAC展开,同理可得.
1.【答案】B
【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.
2.【答案】A
【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.
3.【答案】B
【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.
【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.
4.【答案】B
【解析】几何体是四棱锥,如图.
最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为,故选B.
【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:
或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.