湘教版九年级数学上册全册导学案(共34份)
加入VIP免费下载

本文件来自资料包: 《湘教版九年级数学上册全册导学案(共34份)》 共有 34 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 4.4 解直角三角形的应用(2) 教学目标 1.巩固直角三角形中锐角的三角函数,学会解关于坡度和坡角有关的问题. 2.逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法. 3.培养学生用数学的意识. 重点难点 重点:理解坡角和坡度的内涵及表示方法. 难点:实际问题中,坡度与正切.正弦等的综合运用. 教学设计 一.预习导学 学生通过自主预习教材 P127-P128 完成下列知识点. 如图,从山坡脚下点 P 上坡走到点 N 时,升高的高度 h(即线段 MN 的长)与水平前进的距 离 l(即线段 PM 的长)的比叫做 ,用字母 i 表示,即 i= ,坡度通常写成 1:m 的形式. 图中的∠MPN 叫做 ,显然坡度等于坡角的 . 即 i= .坡度越大,山坡越陡. 设计意图:通过学生的独立学习,了解坡度的概念及它与坡角的关系。培养学生的自主 学习能力。 二.探究展示 (一)合作探究 一山坡的坡度为 i=1:2.小刚从山脚 A 出发,沿山坡向上走了 240m 到达点 C,这座山坡的坡 角是多少度?小刚上升了多少米?(角度精确到 0.010,长度精确到 0.1m) 分析:已知山坡的坡度为 1:2,其实就是告诉我们 =1;2,即 tanA=1:2.由此可得出∠ A 的度数;又知 AC 的长,要求 BC 的长,可以利用∠A 的正弦值求得. AB BC2 解:由题意可得 tanA=i= =0.5,因此∠A≈26.570 在 Rt∆ABC 中,∠B=900,∠A=26.570,AC=240m, 所以 sinA= 所以 BC=240×sin26.570≈107.3(m) 答:这座山坡的坡角约为 26.570,小刚上升了约 07.3m. (二)展示提升 1.如图,某水库大坝横断面迎水坡 AB 的坡度是 ,堤坝高 BC=50m,求坡面 AB 的长. 设计意图:巩固坡度的概念,会用解直角三角形的知识解坡度的题型。 小组合作解决,提醒后进学生先利用坡度求出 AC 的长,然后再求 AB。 2.如图所示,某水库大坝横断面是梯形 ABCD,坝宽 CD=3m,斜坡 AD=16m,坝高 8m,斜坡 BC 的坡度 i=1:3.求斜坡 AD 的坡角和坝宽 AB(结果保留根号). 设计意图:此题是坡度问题的综合运用,目的在于加深学生对“坡度即坡角的正切”的理解, 并能综合运用,以解决实际问题。 斜坡 AD 的坡角即求∠BAE 的大小, 由于 AD=16m,DE=8m,因此, , 所以, 2 1 240 BC AC BC = 3:1 2 1 16 8sin ===∠ AD DEDAE 030=∠DAE3 求坝宽 AB,因为 AB 不是某个直角三角形的边,所以不好直接求得,因此可以考虑分成三段 来求,即 AB=AE+EF+BF 在 Rt△ADE 中,可以利用锐角三角函数求得 AE 的长 在矩形 DEFC 中,EF=DC=3m 在 Rt△BCF 中,斜坡 BC 的坡度 i=1:3,即 , 可以求得 BF=24m 这样,AB=AE+EF+BF,可以快速求得。 三.知识梳理 以”本节课我们学到了什么?”启发学生谈谈本节课的收获. 坡度其实就是坡角的正切,因此知道了坡度,就可以利用锐角三角函数,求出坡角的度数. 从而也能求得山坡的高度或水平长度. 四.当堂检测 如图所示,沿水库拦水坝(横断面为梯形 ABCD)的背水坡 AB 将坝顶 AD 加宽 2 米,背水坡 的坡度由原来的 1:2 改为 1:2.5.已知坝高 6m,求加宽部分横断面 AFEB 的面积. 五.教学反思 本堂课设置的题量不多,要达到教学目的,完成训练目标,要求学生在充分讨论的基础上, 充分展示、质疑。所以学生讨论的时间要保证 10 分钟以上,才能达到教学效果. 3 18tan ==== BFBF CFBi

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料