湘教版九年级数学上册全册导学案(共34份)
加入VIP免费下载

本文件来自资料包: 《湘教版九年级数学上册全册导学案(共34份)》 共有 34 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 2.2.3 因式分解法 教学目标 1.会用因式分解法求解一元二次方程. 2.进一步体会一元二次方程解法中的转化与降次思想. 重点难点 重点:用因式分解法求解一无二次方程. 难点:如何对一元二次方程中的含未知数的多项式进行因式分解. 教学设计 一.预习导学 学生自主预习教材 P37-P39,完成下列各题. 1.将下列各式分解因式 (1)x2-3x; (2)2x(5x-1)-3(5x-1); (3)x2-4; (4)x2-10x+25. 设计意图:复习因式分解,为学习本节新知识作铺垫. 2.若 ab=0,则 =0 或 =0,若 x(x-3)=0,则 =0 或 =0. 3.试求下列方程的根 (1)x(x-7)=0; (2)(x+1+2)(x+1-2)=0; 设计意图:解左边是两个一次式的积,右边是 0 的一元二次方程,初步体会因式分解法 解方程实现“降次”的方法特点. 二、探究展示 (一)合作探究 解方程:x2-3x=0 解:方程的左边提取公因式 x,得 x(x-3)=0 由此得 x=0 或 x-3=0 即 x1=0, x2=3. 归纳:像上面这样,利用因式分解来解一元二次方程的方法叫作因式分解法. 议一议:请用公式法解方程 x2-3x=0,并与上面的因式分解法进行比较,你觉得哪种方 法更简单? 设计意图:通过比较因式分解法相对于公式法的便捷之处,用因式分解法解一元二次方 程的本质也是“降次”,即将一元二次方程分解为两个一次因式,分别令每个因式等于 0,2 得到两个一次方程,这种解方程的方法不同于配方法的开平方,而是依据两个实数的积等于 0 的主要条件是两个实数中必有等于 0 的数. 根据以上解题步骤,组内交流,总结用因式分解法解一元二次方程的基本步骤: (1)将方程化为左边是含未知数的代数式,右边是 0 的形式; (2)将方程左边分解成两个一次因式; (3)令每个因式等于 0; (4)求解. (二)展示提升 用因式分解法解下列方程: (1)x(x-5)=3x; (2)2x(5x-1)=3(5x-1); (3(35-2x)2-900=0; (4)x2-10x+24=0. 设计意图:方程(1)、(2)先化成右边为 0 的形式,然后利用提取公因式法解方程; 方程(3)用平方差公式分解因式,再求解;方程(4)需先配方,然后再利用平方差公式分 解因式求解. 学生上台展示时,老师多加鼓励,以便学生在台上更自信,发挥出自己最佳水平,同时 加以规范、引导,培养学生严谨的解题思维. 三.知识梳理 以“本节课我们学到了什么?”启发学生谈谈本节课的收获. 一元二次方程的三种解法:配方法、公式法、因式分解法,三种解法的特点是: 配方法要先配方,再降次;公式法直接利用求根公式;因式分解法先要使方程一边为两个一 次因式相乘,另一边为 0,再分别使各一次因式等于 0;配方法、公式法适用于所有一元二 次方程,因式分解法用于某些一元二次方程,解一元二次方程的基本思路:化二元为一元, 即“降次”. 四.当堂检测 1.用因式分解法解下列方程: (1)x(x-3)=5x; (2)4x2-20x+25=0. 2.用因式分解法解下列方程: (1)2x(x-1)=1-x; (2)5x(x+2)=4x+8; (3)(x-3)2-2=0; (4)x2+6x+8=0. 3.用因式分解法解下列方程: (1)x2-4x+4=(5-2x)2; (2)(4x-1)2-10(4x-1)2-24=0. 五.教学反思3 本节课采用了“先学后教、合作探究、当堂检测”的课堂教学模式,学生课前先自学, 初步了解因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次, 在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次议程的解法.

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料