湘教版九年级数学上册全册导学案(共34份)
加入VIP免费下载

本文件来自资料包: 《湘教版九年级数学上册全册导学案(共34份)》 共有 34 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2.3 一元二次方程根的判别式 ‎ 教学目标 ‎1.理解一元二次方程根的判别式的作用,会用判别式判断一元二次方程是否有实数根和两个实数根是否相等.‎ ‎2.经历对判别符号△的讨论,体会分类讨论思想. 重点难点 重点:会用判别式判断一元二次方程是否有实数根和两实数根是否相等. 难点:正确计算判别式的值; 分类讨论思想的应用. 教学设计 一.预习导学 学生自主预习教材P43-P45,完成下列各题. 1.一元二次方程的一般形式是 ,其中a、b、c分别叫作 .‎ ‎2. 将一元二次方程ax2+bx+c=0(a≠0),配方得 .‎ ‎3.用公式法解下列方程:‎ ‎(1)x2+3x-1=0; (2) x2-6x+9=0;‎ ‎(3)2y2-3y+4=0.‎ 设计意图:回顾旧知,激发学生的学习兴趣,为本节课学习根的判别式作铺垫.‎ 二.探究展示 ‎(一)合作探究 议一议:我们在运用公式法求解一元二次方程(ax2+bx+c=0(a≠0)时,总是要 求b2-4ac≥0,这是为什么?将方程ax2+bx+c=0(a≠0)配方得到 ‎ (x+)2=‎ 由于a≠0,所以>0,因此我们不难发现:‎ ‎(1)当>0时, >0,由于正数有两个平方根,所以原方程有两个不相等的实数根,分别为x1=, x2=. (2)当=0时,=0.‎ 由于0的平方根为0,所以原方程有两个相等的实数根,两实数根为x1=x2=-.‎ 2‎ ‎(3)当<0时,<0.‎ 由于负数在实数范围内没有平方根,所以原方程没有实数根.‎ ‎ 归纳:由此可见,代数式是考察一元二次方程根的情形的依据,因此我们把叫作一元二次方程ax2+bx+c=0(a≠0)的根的判别式,记作“△”,即△=‎ 设计意图:由旧知引入,使学生更容易理解根的判别式的意义.‎ ‎(二)展示提升 利用判别式判断下列方程根的情况:‎ ‎(1)3x2+4x-3=0; (2)4x2=12x-9;‎ ‎(3)7y=5(y2+1). ‎ 设计意图:方程(1)△=52>0,因此方程有两个不相等的实数根; 方程(2)△=0,因此方程有两个相等的实数根; 方程(3)△=-51<0,因此方程没有实数根,通过此巩固训练,加强学生对根的判别式运用的熟练程度.‎ 三.知识梳理 以”本节课我们学到了什么?”启发学生谈谈本节课的收获.‎ ‎>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根=0一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根;<0一元二次方程ax2+bx+c=0(a≠0)没有实数根.‎ 四.当堂检测 ‎1.一元二次方程x2-x+1的根的情况为( )‎ ‎(A)有两个相等的实数根 (B)有两个不相等的实数根 ‎ ‎ (C)只有一个实数根 (D)没有实数根 ‎2.不解方程,利用判别式判断下列方程根的情况:‎ ‎(1)3x2-4x+1=0 ; (2)x(x+8)=16; ‎ ‎(3)(x+2)(x-2)=1; (4)x+5=.‎ 五.教学反思 本节课以学生为中心,老师为主导,注重学生良好的思维品质的培养,重视讨论、交流和合作,以及探究问题习惯的培养和养成,通过讨论交流,实现生生互助、师生互助,活跃课堂气氛,让学生自主体验学习.‎ 2‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料