2018中考数学总复习备考全套演练(广东省30套带答案)
加入VIP免费下载

本文件来自资料包: 《2018中考数学总复习备考全套演练(广东省30套带答案)》 共有 31 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 第五章 四边形 第2课时 特殊的平行四边形(1)‎ ‎【备考演练】‎ 备考演练 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 一、选择题 ‎1.下列判断错误的是(   )               ‎ A.两组对边分别相等的四边形是平行四边形 ‎ B.四个内角都相等的四边形是矩形 C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形 ‎2.(2017·临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(   )‎ A.若AD⊥BC,则四边形AEDF是矩形 B.若AD垂直平分BC,则四边形AEDF是矩形 C.若BD=CD,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是菱形 ‎ ‎ ‎     ‎ 第2题图 第3题图 ‎3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为 (   )‎ A.1 B.‎2 C.3 D.4‎ ‎4.已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=‎6cm,则OE的长为 (   )‎ A.‎6cm B.‎4cm C.‎3cm D.‎‎2cm ‎ ‎ ‎    ‎ 第4题图 第5题图 ‎5.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是 (   )‎ A.7 B.‎8 C.9 D.10‎ 二、填空题 ‎1.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使ABCD成为菱形.(只需添加一个即可)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎ ‎ 第1题图     第2题图 ‎2.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为‎2cm,∠A=120°,则EF=________cm.‎ ‎3.(2017·宜宾)在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是__________.‎ ‎4.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=‎10cm,则CD的长为________cm.‎ ‎   ‎ 第4题图 第5题图 ‎5.如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为____________________.‎ ‎6.(2017·衢州)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是__________.‎ 三、解答题 ‎1.(2017·徐州)如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.‎ ‎(1)求证:四边形BECD是平行四边形;‎ ‎(2)若∠A=50°,则当∠BOD=__________°时,四边形BECD是矩形.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2.(2017·宁夏)在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.‎ ‎3.如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.‎ ‎4.(2017·衢州中考改编题)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,求DF的长.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎5.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.‎ ‎(1)求证:四边形BMDN是菱形;‎ ‎(2)若AB=4,AD=8,求MD 的长.‎ ‎6.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A‎1C1相交于点D,AC与A‎1C1、BC1分别交于点E、F.‎ ‎(1)求证:△BCF≌△BA1D.‎ ‎(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.‎ ‎7.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD、CE.‎ ‎(1)求证:△ACD≌△EDC;‎ ‎(2)若点D是BC中点,说明四边形ADCE是矩形.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 四、能力提升 ‎1.(2017·哈尔滨)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为 ‎ ‎__________.‎ ‎ ‎ ‎     ‎ 第1题图 第2题图 ‎2.(2017安徽)如图,在矩形ABCD中,AB=5,AD ‎=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为(   )‎ A. B. C.5 D. 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎   ‎ 答案:‎ 一、1.D 2.D 3.C 4.C 5.C 二、1.OA=OC或AD=BC或AD∥BC或AB=BC等 ‎2. 3.24 4.5 5.y=x 6.a+6‎ 三、1.(1)证明:∵四边形ABCD为平行四边形,‎ ‎∴AB∥DC,AB=CD,∴∠OEB=∠ODC,‎ 又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;‎ ‎(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°-50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.‎ ‎2.证明:∵AB∥DM,∴∠BAM=∠AMD,∵△ADC是由△ABC翻折得到,∴∠CAB=∠CAD,AB=AD,BM=DM,∴∠DAM=∠AMD,∴DA=DM=AB=BM,∴四边形ABMD是菱形.‎ ‎3.证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,∴∠AOD=∠BOC,在△AOD和△BOC中,,∴△AOD≌△BOC,∴AO=OB.‎ ‎4.解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),‎ ‎∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,则FD=6-x=.‎ ‎5.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠MDO=∠NBO.∵MN是BD的垂直平分线,∴OB=OD,又∵∠MOD=∠BON,∴△MOD≌△NOB,∴MD=BN.又∵MD∥BN,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.‎ ‎(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=5.答:MD长为5.‎ ‎6.(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,‎ 在△BCF与△BA1D中,,‎ ‎∴△BCF≌△BA1D;‎ ‎(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,‎ ‎∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°-α,∵∠C=α,‎ ‎∴∠A1=α,∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,∴∠A1=∠C,∠A1BC=∠A1EC,∴‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 四边形A1BCE是平行四边形,又A1B=BC,∴四边形A1BCE是菱形.‎ ‎7.证明:(1)∵四边形ABDE是平行四边形,‎ ‎∴AB∥DE,AB=DE.∠B=∠EDC.‎ 又∵AB=AC,∴AC=DE,∠B=∠ACB,‎ ‎∴∠EDC=∠ACD.∵在△ADC和△ECD中,‎ ,∴△ADC≌△ECD(SAS);‎ ‎(2)∵四边形ABDE是平行四边形,‎ ‎∴BD∥AE,BD=AE,∴AE∥CD,‎ ‎∵点D是BC中点,∴BD=CD,∴AE=CD,‎ ‎∴四边形ADCE是平行四边形;‎ 在△ABC中,AB=AC,BD=CD,∴AD⊥BC,‎ ‎∴∠ADC=90°,∴四边形ADCE是矩形.‎ 四、1.(提示)由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=‎3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.‎ ‎2.D 解:设△ABP中AB边上的高是h.‎ ‎∵S△PAB=S矩形ABCD,∴AB·h=AB·AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离.‎ 在Rt△ABE中,∵AB=5,AE=2+2=4,‎ ‎∴BE===,‎ 即PA+PB的最小值为.‎ 故选D.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料