- 1 -
第 63 讲 相似的应用
题一: 如图,为了测量某棵树的高度,小明用长为 2 米的竹竿做测量工具,移动竹竿,使竹竿、
树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距 6 米,与树相距 15 米,求树的高
度.
题二: 如图,某同学想测量旗杆的高度,他在某一时刻测得 1 米长的竹竿在竖直放置时,影长 2
米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),
他测得落在地面上影长为 10 米,留在斜坡上的影长为 2 米,∠DCE 为 45°,则旗杆的高度约为多少
米?
题三: 如图,这是我校足球场右上角的示 意图,B点是发点球处,围栏外 A 点有一根电杆.利用
皮尺 无法直接测量 A、B 之间的距离,请你设计一个方案,测出 A、B 间的距离,作出图示,说说你
的理由.
题四: 有一棵高大的松树,要测出 它的高度,但不能爬到树上去,也不能将树砍倒,你有什么方
法吗?说一说你的方法.
题五: 如图所示,小明为测量一棵树 CD 的高度,他在距树 24 米处立了一根高为 2 米的标杆 EF,
然后小明前后调整自己的位置,当他与树相距 27 米时,他的眼睛、标杆的顶端和树顶端在同一直线
上.已知小明身高 1.6 米,求树的高度.- 2 -
题六: 身高 1.7 米的人站在两棵树之间,距较高的树 5 米,距较矮的树 3 米,若此人观察两棵树
所成的视线的夹角为 90°,且较矮的树的高为 4 米,求较高的树的高.3
第 63 讲 相似的应用
题一: 7 米.
详解:∵AB⊥OD,CD⊥OD,∴AB∥CD,
∴△OAB∽△OCD,∴ ,
∵AB=2,OB=6,OD=6+15=21,
∴ ,∴CD=7.
答:树的高度为 7 米.
题二: 5+ .
详解:延长 AD 交 BC 的延长线于点 F,过点 D 作 DE⊥BC 于点 E,
∵CD=2,∠DCE= 45°,∴DE=CE= ,
∵同一时刻物高与影长成正比,∴ ,∴EF=2DE=2 ,
∵DE⊥BC,AB⊥BC,∴△EDF∽△BAF,
∴ ,即 ,∴AB=5+ .
答:旗杆的高度约为 5+ 米.
题三: 见详解.
详解:如图,构造出△ABC,在 CB 的延长线上截取 BE= BC,作∠BED=∠ACB,交 AB 的延长
线于点 D,得到△BDE,只要测量出 BD 的长度,即可得到A、B 间的距离.
理由:∵∠ABC=∠DBE,∠BED=∠ACB,
∴△ABC∽△DBE,∴ =2,∴AB=2BD.
题四: 见详解.
详解:方法一:如图,将一小木棒 A′B′也立在阳光下,测量小木棒(A′B′)此时的影子
AB OB
CD OD
=
2 6
21CD
=
3 2
2
2
1
2
DE
EF
= 2
DE EF
AB BF
= 2 2 2
10 2 2 2AB
=
+ +
3 2
2
3 2
2
1
2
AB BC
BD BE
=4
长 B′C′和树的影子长 BC,测量小木棒 A′B′ 的长,则易知△ABC∽△A′B′C′,故有
,所以 AB= .因 为 A′B′,BC 及 B′C′都已经测量出来,从而可计
算得到树高 AB.
方法二:如图,找一根比你身体高一点的木棒,将它竖直立在地上,你沿 CE 方向,从木棒 DF
的 F 处往后退到 G 点,使眼睛可以看到木棒顶端 D 与树尖 A 在同一条直线上,同时,测出水
平方向与木棒 DF 和树 AB 的交点 E,C,HG 为眼睛离地面的高度.易知△HDE∽△HAC,从而
,故 AC= ,所以只要测出 HC,DE,HE,就可以用上式求得 AC,从而树高
AB=AC+BC,这样,树高就可以求得了.
题五: 5.2 米.
详解:过点 A 作 AN∥BD 交 CD 于 N,交 EF 于 M,
∵人、标杆、树都垂直于地面,∴∠ABF=∠EFD=∠CDF=90°,
∴AB∥EF∥CD,∴∠EMA=∠CNA,
∵∠EAM=∠CAN,∴△AEM∽△ACN,∴ ,
∵AB=1.6,EF=2,BD=27,FD=24,∴ ,
∴CN=3.6,∴CD=3.6+1.6=5.2,
因此,树的高度为 5.2 米.
题六: 8.2 米.
详解:根据题意作出图形,则 AB= 4,GC=BD=3,CH=DF=5,CD=1.7,∠ACE=90°,
∴AG=2.3,∴∠ACG+∠ECH=90°,
∵∠A+∠AC G=90°,∴∠A=∠ECH,∴△AGC∽△CHE,
∴ ,即 ,∴HE≈6.5,∴EF=EH+HF=6.5+1.7=8.2.
答:较高的树的高是 8.2 米 .
AB BC
A B B C
=′ ′ ′ ′
A B BC
B C
′ ′⋅
′ ′
HE DE
HC AC
= HC DE
HE
⋅
EM AM
CN AN
=
2 1.6 27 24
27CN
− −=
AG GC
CH HE
= 2.3 3
5 HE
=5