- 1 -
第 67 讲 正弦、余弦、正切定义
题一: (1)如图,在 Rt△ABC 中,∠C=90 ゜,AC=12,AB=13,
则 sinA=______;cosA=______;tanA=______;
sinB=______;cosB=______;tanB=______.
(2)如图,Rt△A BC 中 ,∠C=90 °,
则 sinA=______,cosA=______,tanA=______;
sinB=______,cosB=______,tanB=______.
题二:(1)在△ABC 中,∠C=90°,AC=1,BC= ,
则 sinA=______;cosA=______;tanA=______;
sinB=______;cosB=______;tanB=______ .
(2)如图,在 Rt△ABC 中,∠C=90°,D 是 BC 边上一点,AC=2,CD=1,设∠CAD=α.
则 sinα=______;cosα=______;tanα=______;
sin(90°-α)=______;cos(90°-α)=______;tan(90°-α)=______.
题三:在 Rt△ABC 中,∠C=90°,sinB= ,则 cosB+tanB=______.
题四:在 Rt△ABC 中,∠C=90°,∠A=30°,则 tanA+tanB=______.
3
3
2- 2 -
第 67 讲 正弦、余弦、正切定义
题一:见详解.
详解:(1)∵∠C=90 °,AC=12,AB=13,∴BC= =5,
∴sinA= ;cosA= ;tanA= ;
sinB= ;cosB= ;tanB= .
(2)由图可知,∠C=90°,AC=6,AB=10,BC=8,
∴sinA= ;cosA= ;tanA= ;
sinB= ;cosB= ;tanB= .
题二:见详解.
详解:(1)如图,∵∠C=90°,AC=1,BC= ,∴AB= ,
∴sinA= ;cosA= ;tanA= ;
sinB= ;cosB= ;tanB= .
(2)在 Rt △ABC 中,∠C=90°,AC=2,CD=1,
∴AD= ,
∴sinα= ;cosα= ;tanα= ;
sin(90°-α)= ;cos(90°-α)= ;tan(90°-α)= .
题三: .
详解:在 Rt△ABC 中,∠C=90°,sinB= ,
2 2 2 213 12AB AC− = −
5
13
CB
AB
= 12
13
AC
AB
= 5
12
BC
AC
=
12
13
AC
AB
= 5
13
CB
AB
= 12
5
AC
BC
=
4
5
CB
AB
= 3
5
AC
AB
= 4
3
BC
AC
=
3
5
AC
AB
= 4
5
CB
AB
= 3
4
AC
BC
=
3 2 2 2 21 ( 3) 2AC BC+ = + =
3
2
CB
AB
= 1
2
AC
AB
= 3BC
AC
=
1
2
AC
AB
= 3
2
CB
AB
= 3
3
AC
BC
=
2 2 2 21 2 5CD AC+ = + =
1 5
55
CD
AD
= = 2 2 5
55
AC
AD
= = 1
2
CD
AC
=
2 2 5
55
AC
AD
= = 1 5
55
CD
AD
= = 2AC
CD
=
1 2 3
2
+
3
2- 3 -
∴∠B=60°,∴cosB+tanB= .
题四: .
详解:在 Rt△ABC 中,∠C=90°,∠A=30°,则∠B=90°-30°=60°,
∴tanA+tanB=t an 30°+tan60°= .
1 1 2 332 2
++ =
4 3
3
3 4 333 3
+ =4