2019年高考数学热点难点突破专练(含解析共51套)
加入VIP免费下载

本文件来自资料包: 《2019年高考数学热点难点突破专练(含解析共51套)》 共有 51 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
平面向量及其应用 ‎1.在△ABC中,点D,E分别在边BC,AC上,且=2,=3,若=a,=b,则=(  )‎ A.a+b B.a-b C.-a-b D.-a+b ‎【解析】‎ =+ ‎=+ ‎=(-)- ‎=--=-a-b,故选C.‎ ‎【答案】 C ‎2.已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=(  )‎ A. B.2 C.- D.-2‎ ‎【解析】由向量a=(2,3),b=(-1,2),得ma+nb=(2m-n,3m+2n),a-2b=(4,-1).由ma+nb与a-2b共线,得=,所以=-,故选C.‎ ‎【答案】 C ‎3.已知两个非零向量a与b的夹角为θ,则“a·b>0”是“θ为锐角”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 11‎ ‎【解析】由a·b>0,可得到θ∈,不能得到θ∈;而由θ∈,可以得到a·b>0.故选B.‎ ‎【答案】 B ‎4.已知向量a,b均为单位向量,若它们的夹角为60°,则|a+3b|等于(  )‎ A. B. C. D.4‎ ‎【解析】依题意得a·b=,|a+3b|==,故选C.‎ ‎【答案】 C ‎5.已知△ABC是边长为1的等边三角形,则(-2)·(3+4)=(  )‎ A.- B.- C.-6- D.-6+ ‎6.如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若=λ+μ(λ,μ为实数),则λ2+μ2=(  )‎ A. B. C.1 D. ‎【解析】=+=+=+(+)=-,所以λ=,μ=-,故λ2+μ2=,故选A.‎ ‎【答案】 A 11‎ ‎7.如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,=3,F为AE的中点,则=(  )‎ A.- B.- C.-+ D.-+ ‎【解析】解法一:如图,取AB的中点G,连接DG、CG,则易知四边形DCBG为平行四边形,所以==-=-,∴=+=+=+=+,于是=-=-=-=-+,故选C. ‎ 解法二:=+=+ ‎=-+ ‎=-+ ‎=-+++(++)‎ ‎=-+.‎ ‎【答案】 C ‎8.已知平面向量a,b,c满足|a|=|b|=|c|=1,若a·b=,则(a+b)·(2b-c)的最小值为(  )‎ A.-2 B.3- C.-1 D.0‎ ‎【解析】由|a|=|b|=1,a·b=,可得〈a,b〉=,令=a,=b,以的方向为x 11‎ 轴的正方向建立如图所示的平面直角坐标系,则a==(1,0),b==,设c==(cosθ,sinθ)(0≤θ

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料