2019年高考数学热点难点突破专练(含解析共51套)
加入VIP免费下载

本文件来自资料包: 《2019年高考数学热点难点突破专练(含解析共51套)》 共有 51 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
圆锥曲线的综合问题 ‎1.已知椭圆+=1(a>b>0)的离心率e=,左、右焦点分别为F1,F2,且F2与抛物线y2=4x的焦点重合.‎ ‎(1)求椭圆的标准方程;‎ ‎(2)若过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,求|AC|+|BD|的最小值.‎ 解 (1)抛物线y2=4x的焦点坐标为(1,0),所以c=1,‎ 又因为e===,所以a=,‎ 所以b2=2,‎ 所以椭圆的标准方程为+=1.‎ ‎(2)①当直线BD的斜率k存在且k≠0时,‎ 直线BD的方程为y=k(x+1),‎ 代入椭圆方程+=1,‎ 并化简得(3k2+2)x2+6k2x+3k2-6=0.‎ Δ=36k4-4(3k2+2)(3k2-6)=48(k2+1)>0恒成立.‎ 设B(x1,y1),D(x2,y2),‎ 则x1+x2=-,x1x2=,‎ ‎|BD|=·|x1-x2|‎ ‎= ‎=.‎ 由题意知AC的斜率为-,‎ 所以|AC|==.‎ ‎|AC|+|BD|=4 ‎=≥ 6‎ ‎==.‎ 当且仅当3k2+2=2k2+3,即k=±1时,上式取等号,‎ 故|AC|+|BD|的最小值为.‎ ‎②当直线BD的斜率不存在或等于零时,‎ 可得|AC|+|BD|=>.‎ 综上,|AC|+|BD|的最小值为. ‎ ‎5.已知椭圆C:+=1(a>b>0)的上顶点为点D,右焦点为F2(1,0),延长DF2交椭圆C于点E,且满足|DF2|=3|F2E|.‎ ‎(1)求椭圆C的标准方程;‎ ‎(2)过点F2作与x轴不重合的直线l和椭圆C交于A,B两点,设椭圆C的左顶点为点H,且直线HA,HB分别与直线x=3交于M,N两点,记直线F2M,F2N的斜率分别为k1,k2,则k1与k2之积是否为定值?若是,求出该定值;若不是,请说明理由.‎ 解 (1)椭圆C的上顶点为D(0,b),右焦点F2(1,0),点E的坐标为(x,y).‎ ‎∵|DF2|=3|F2E|,可得=3,‎ 又=(1,-b),=(x-1,y),‎ ‎∴代入+=1,‎ 可得+=1,‎ 又a2-b2=1,解得a2=2,b2=1,‎ 即椭圆C的标准方程为+y2=1.‎ 6‎ ‎∴yM=.‎ 同理可得yN=,‎ ‎∴M,N的坐标分别为,,‎ ‎∴k1k2=·=yMyN ‎=·· ‎= ‎= ‎===.‎ ‎∴k1与k2之积为定值,且该定值是.‎ ‎6.已知平面上动点P到点F的距离与到直线x=的距离之比为,记动点P的轨迹为曲线E.‎ ‎(1)求曲线E的方程;‎ 6‎ ‎(2)设M(m,n)是曲线E上的动点,直线l的方程为mx+ny=1.‎ ‎①设直线l与圆x2+y2=1交于不同两点C,D,求|CD|的取值范围;‎ ‎②求与动直线l恒相切的定椭圆E′的方程,并探究:若M(m,n)是曲线Γ:Ax2+By2=1(A·B≠0)上的动点,是否存在与直线l:mx+ny=1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由.‎ 解 (1)设P(x,y),由题意,得=.‎ 整理,得+y2=1,‎ ‎∴曲线E的方程为+y2=1.‎ ‎(2)①圆心到直线l的距离d=,‎ ‎∵直线与圆有两个不同交点C,D,‎ ‎∴|CD|2=4.‎ 又∵+n2=1(m≠0),‎ ‎∴|CD|2=4.‎ ‎∵|m|≤2,∴0

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料