由莲山课件提供http://www.5ykj.com/ 资源全部免费
[课 时 跟 踪 检 测]
[基 础 达 标]
1.如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )
A.北偏东10°
B.北偏西10°
C.南偏东80°
D.南偏西80°
解析:由条件及图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯搭A在灯塔B南偏西80°。
答案:D
2.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为( )
A.8 km/h B.6 km/h
C.2 km/h D.10 km/h
解析:设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sinθ==,从而cosθ=,所以由余弦定理得2=2+12-2××2×1×,解得v=6.
答案:B
3.(2018届德阳模拟)已知两座灯塔A、B与C的距离都是a,灯塔A在C的北偏东20°,灯塔B在C的南偏东40°,则灯塔A与灯塔B的距离为( )
A.a B.a
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.a D.2a
解析:画出相应的图形,如图所示,∠ACB=120°,|CA|=|CB|=a,
∴∠A=∠B=30°,
在△ABC中,根据正弦定理=得|AB|==a,
则灯塔A与灯塔B的距离为a.故选B.
答案:B
4.某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为( )
A.15米 B.5米
C.10米 D.1米
解析:如图所示,设塔高为h,在Rt△AOC中,∠ACO=45°,则OC=
OA=h.
在Rt△AOD中,∠ADO=30°,
则OD=h,在△OCD中,∠OCD=120°,CD=10,由余弦定理得OD2=OC2+CD2-2OC·CDcos∠OCD,即(h)2=h2+102-2h×10×cos120°,∴h2-5h-50=0,解得h=10或h=-5(舍去).
答案:C
5.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为( )
A.1千米 B.2sin10° 千米
C.2cos10° 千米 D.cos20° 千米
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:由题意知DC=BC=1,∠BDC=160°,∴BD2=DC2+CB2-2DC·CB·cos160°=1+1-2×1×1×cos(180°-20°)=2+2cos20°=4cos210°,∴BD=2cos10°.
答案:C
6.(2018届四川成都七中期中)如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( )
A.50 m B.50 m
C.25 m D. m
解析:由正弦定理得=,
∴AB=×sin∠ACB=×sin45°=50,故A、B两点的距离为50 m,故选A.
答案:A
7.在200 m高的山顶上,测得山下塔顶和塔底的俯角分别为30°,60°,则塔高为( )
A. m B. m
C. m D. m
解析:如图,在Rt△BAC中,∠ABC=30°,AB=200,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BC==.
∵∠EBD=30°,∠EBC=60°,
∴∠DBC=30°,∠BDC=120°.
在△BDC中,=.
∴DC===(m).
答案:A
8.(2018届潍坊质检)校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 m(如图所示),旗杆底部与第一排在一个水平面上.若国歌时长为50 s,升旗手应以________m/s的速度匀速升旗.
解析:依题意可知∠AEC=45°,∠ACE=180°-60°-15°=105°,∴∠EAC=180°-45°-105°=30°.
由正弦定理可知=,
∴AC=·sin∠CEA=20 m.
∴在Rt△ABC中,AB=AC·sin∠ACB=20×=30 m.∵国歌时长为50 s,∴升旗速度为=0.6 m/s.
答案:0.6
9.如图,在△ABC中,sin=,AB=2,点D在线段AC上,且AD=2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
DC,BD=,则cosC=________.
解析:由条件得cos∠ABC=,sin∠ABC=.
在△ABC中,设BC=a,AC=3b,
则由余弦定理得9b2=a2+4-a.①
因为∠ADB与∠CDB互补,所以cos∠ADB=-cos∠CDB,所以=-,所以3b2-a2=-6,②
联立①②解得a=3,b=1,所以AC=3,BC=3.
在△ABC中,cosC===.
答案:
10.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile的C处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.
解:如图所示,根据题意可知AC=10,∠ACB=120°,设舰艇靠近渔轮所需的时间为t h,并在B处与渔轮相遇,则AB=21t,BC=9t,在△ABC中,根据余弦定理得AB2=AC2+BC2-2AC·BC·cos 120°,所以212t2=102+81t2+2×10×9t×,即360t2-90t-100=0,解得 t=或t=-
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(舍去).所以舰艇靠近渔轮所需的时间为 h.此时AB=14,BC=6.
在△ABC中,根据正弦定理,得=,
所以sin∠CAB==,
即∠CAB≈21.8°或∠CAB≈158.2 °(舍去),
即舰艇航行的方位角为45°+21.8°=66.8°.
所以舰艇以66.8°的方位角航行,需 h才能靠近渔轮.
[能 力 提 升]
1.(2018届广东深圳第二次调研)如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD.当∠ABC变化时,对角线BD的最大值为________.
解析:设AC=CD=x,在△ABC中,由余弦定理知AC2=AB2+BC2-2AB·BC·cos∠ABC,所以x2=1+3-2cos∠ABC=4-2cos∠ABC.①由正弦定理得=,即sin∠ACB=.②在△BCD中,
由余弦定理知,BD= = ,
将①②式代入化简得,BD= .
因为∠ABC∈(0,π),所以sin可以取到最大值1,所以|BD|max==+1.
答案:+1
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2.(2018届盐城质检)如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?
解:设∠AMN=θ,在△AMN中,=.
因为MN=2,所以AM=sin(120°-θ).
在△APM中,cos∠AMP=cos(60°+θ).
AP2=AM2+MP2-2AM·MP·cos∠AMP=·sin2(120°-θ)+4-2×2×sin(120°-θ)cos(60°+θ)
=sin2(θ+60°)-sin(θ+60°)cos(θ+60°)+4
=[1-cos(2θ+120°)]-sin(2θ+120°)+4
=-[sin(2θ+120°)+cos(2θ+120°)]+
=-sin(2θ+150°),θ∈(0°,120°).
当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP取得最大值2.
所以设计∠AMN=60°时,工厂产生的噪声对居民影响最小.
由莲山课件提供http://www.5ykj.com/ 资源全部免费