由莲山课件提供http://www.5ykj.com/ 资源全部免费
[课 时 跟 踪 检 测]
[基 础 达 标]
1.已知双曲线x2+my2=1的虚轴长是实轴长的2倍,则实数m的值是( )
A.4 B.
C.- D.-4
解析:依题意得m0,b>0)的离心率为,则其渐近线方程为( )
A.y=±2x B.y=±x
C.y=±x D.y=±x
解析:由条件e=,即=,得==1+=3,所以=,所以双曲线的渐近线方程为y=±x.故选B.
答案:B
3.(2017届合肥质检)若双曲线C1:-=1与C2:-=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=( )
A.2 B.4
C.6 D.8
解析:由题意得,=2⇒b=2a,又C2的焦距2c=4⇒c==2⇒b=4,故选B.
答案:B
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4.(2017年天津卷)已知双曲线-=1(a>0,b>0)的左焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )
A.-=1 B.-=1
C.-y2=1 D.x2-=1
解析:由题意解得a2=1,b2=3,所以双曲线方程为x2-=1.
答案:D
5.(2018届广东七校联考)若双曲线-=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )
A. B.
C. D.
解析:因为双曲线-=1(a>0,b>0)的渐近线为y=±x,所以根据一条渐近线经过点(3,-4),可知3b=4a.又b2=c2-a2,所以9(c2-a2)=16a2,即9c2=25a2,所以e==,故选D.
答案:D
6.(2017年全国卷Ⅰ)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为( )
A. B.
C. D.
解析:由c2=a2+b2=4得c=2,所以F(2,0),将x=2代入x2-=1,得y=±3,所以|PF|=3,又A的坐标是(1,3),故△APF的面积为×3×(2-1)=
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,故选D.
答案:D
7.(2017届河南六市第一次联考)已知点F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线C的左、右两支分别交于A,B两点,若|AB|∶|BF2|∶|AF2|=3∶4∶5,则双曲线的离心率为( )
A.2 B.4
C. D.
解析:由题意,设|AB|=3k,|BF2|=4k,|AF2|=5k,则BF1⊥BF2,|AF1|=|AF2|-2a=5k-2a,∵|BF1|-|BF2|=5k-2a+3k-4k=4k-2a=2a,∴a=k,∴|BF1|=6a,|BF2|=4a,又|BF1|2+|BF2|2=|F1F2|2,即13a2=c2,∴e==.
答案:C
8.(2018届陕西部分学校高三摸底)在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1,过C1的左顶点引C1的一条渐近线的平行直线,则该直线与另一条渐近线及x轴所围成的三角形的面积为( )
A. B.
C. D.
解析:设双曲线C1的左顶点为A,则A,双曲线的渐近线方程为y=±x,不妨设题中过点A的直线与渐近线y=x平行,则该直线的方程为y=,即y=x+1.联立,得解得所以该直线与另一条渐近线及x轴所围成的三角形的面积S=|OA|×=××=,故选C.
答案:C
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9.(2017届西安质检)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=________.
解析:双曲线的右焦点为F(2,0),过F与x轴垂直的直线为x=2,渐近线方程为y=±x,将x=2代入x2-=0,得y2=12,∴y=±2,∴|AB|=4.
答案:4
10.如图所示,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且双曲线过C,D两顶点.若|AB|=4,|BC|=3,则此双曲线的标准方程为________.
解析:设双曲线的标准方程为-=1(a>0,b>0).由题意得B(2,0),C(2,3),∴解得∴双曲线的标准方程为x2-=1.
答案:x2-=1
11.已知F1,F2为双曲线-=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P和Q.且△F1PQ为正三角形,则双曲线的渐近线方程为________.
解析:设F2(c,0)(c>0),P(c,y0),代入双曲线方程得y0=±,在Rt△F1F2P中,∠PF1F2=30°,∴|F1F2|=|PF2|,即2c=·.又∵c2=a2+b2,∴b2=2a2或2a2=-3b2(舍去).∵a>0,b>0,∴=.故所求双曲线的渐近线方程为y=±x.
答案:y=±x
12.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-),点M(3,m)在双曲线上.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求双曲线的方程;
(2)求证:·=0;
(3)求△F1MF2的面积.
解:(1)∵e=,则双曲线的实轴、虚轴相等.
∴可设双曲线方程为x2-y2=λ.(λ≠0)
∵双曲线过点(4,-),∴16-10=λ,即λ=6.
∴双曲线方程为x2-y2=6.
(2)证明:由(1)知F1(-2,0),F2(2,0),
∴=(-2-3,-m),=(2-3,-m).
∴·=(3+2)×(3-2)+m2=-3+m2.
∵M点在双曲线上,
∴9-m2=6,即m2-3=0,∴·=0.
(3)∵△F1MF2的底边长|F1F2|=4.
由(2)知m=±.
∴△F1MF2的高h=|m|=,∴S△F1MF2=×4×=6.
[能 力 提 升]
1.(2018届惠州模拟)已知双曲线C:-=1(a>0,b>0)的离心率为,左、右顶点分别为A,B,点P是双曲线上异于A,B的点,直线PA,PB的斜率分别为kPA,kPB,则kPA·kPB=( )
A.1 B.
C. D.3
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解析:由双曲线的离心率为,得b=a,所以双曲线的方程可化为x2-y2=a2,左顶点A(-a,0),右顶点B(a,0),设点P(m,n)(m≠±a),则直线PA的斜率kPA=,直线PB的斜率kPB=,所以kPA·kPB= ①,又P(m,n)是双曲线x2-y2=a2上的点,所以m2-n2=a2,得n2=m2-a2,代入①式得kPA·kPB=1.
答案:A
2.(2017届三明质检)已知P是双曲线-y2=1上任意一点,过点P分别作双曲线的两条渐近线的垂线,垂足分别为A,B,则·的值是( )
A.- B.
C.- D.不能确定
解析:令点P(x0,y0),因为该双曲线的渐近线分别是-y=0,+y=0,所以可取||=,||=,又cos∠APB=-cos∠AOB=-cos2∠AOx=-cos=-,所以·=||·||·cos∠APB=·=×=-.
答案:A
3.若点P是以A(-3,0),B(3,0)为焦点,实轴长为2的双曲线与圆x2+y2=9的一个交点,则|PA|+|PB|=________.
解析:不妨设点P在双曲线的右支上,则|PA|>|PB|.因为点P是双曲线与圆的交点,
所以由双曲线的定义知,|PA|-|PB|=2,①
又|PA|2+|PB|2=36,②
联立①②化简得2|PA|·|PB|=16,
所以(|PA|+|PB|)2=|PA|2+|PB|2+2|PA|·|PB|=52,所以|PA|+|PB|=2.
答案:2
4.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在双曲线的右支上,且|PF1|=4|PF2|,则双曲线的离心率e的最大值为________.
解析:由双曲线定义知|PF1|-|PF2|=2a,
又已知|PF1|=4|PF2|,所以|PF1|=a,|PF2|=a,在△PF1F2中,由余弦定理得cos∠F1PF2==-e2,要求e的最大值,即求cos∠F1PF2的最小值.
∵cos∠F1PF2≥-1,∴cos∠F1PF2=-e2≥-1,解得e≤,即e的最大值为.
答案:
5.已知双曲线C:-=1(a>0,b>0)的离心率为,点(,0)是双曲线的一个顶点.
(1)求双曲线的方程;
(2)经过双曲线右焦点F2作倾斜角为30°的直线,直线与双曲线交于不同的两点A,B,求|AB|.
解:(1)∵双曲线C:-=1(a>0,b>0)的离心率为,点(,0)是双曲线的一个顶点,∴,解得c=3,b=,
∴双曲线的方程为-=1.
(2)双曲线-=1的右焦点为F2(3,0),
∴经过双曲线右焦点F2且倾斜角为30°的直线的方程为y=(x-3).
联立得5x2+6x-27=0.
设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=-.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以|AB|= × =.
由莲山课件提供http://www.5ykj.com/ 资源全部免费