2020年高考数学一轮复习全套教案(新坐标)
加入VIP免费下载

本文件来自资料包: 《2020年高考数学一轮复习全套教案(新坐标)》 共有 68 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
天添资源网 http://www.ttzyw.com/‎ 第十章 概率 第一节 随机事件的概率 ‎[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.‎ ‎1.事件的相关概念 ‎2.频数、频率和概率 ‎(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)概率:对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).‎ ‎3.事件的关系与运算 定义 符号表示 包含关系 若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)‎ B⊇A(或A⊆B)‎ 相等关系 若B⊇A,且A⊇B,那么称事件A与事件B相等 A=B 并事件(和事件)‎ 若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)‎ A∪B(或A+B)‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ 交事件(积事件)‎ 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)‎ A∩B(或AB)‎ 互斥事件 若A∩B为不可能事件,那么称事件A与事件B互斥 A∩B=∅‎ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅且A∪B=Ω ‎4.概率的几个基本性质 ‎(1)概率的取值范围:0≤P(A)≤1;‎ ‎(2)必然事件的概率P(A)=1;‎ ‎(3)不可能事件的概率P(A)=0;‎ ‎(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);‎ ‎(5)对立事件的概率:若事件A与事件B互为对立事件,则P(A)=1-P(B).‎ ‎1.对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,“互斥”是“对立”的必要不充分条件.‎ ‎2.概率加法公式的推广 当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).‎ ‎[基础自测]‎ ‎1.(思考辨析)判断下列结论的正误(正确的打“√”,错误的打“×”)‎ ‎(1)事件发生的频率与概率是相同的. (  )‎ ‎(2)在大量重复试验中,概率是频率的稳定值. (  )‎ ‎(3)两个事件的和事件发生是指两个事件都得发生. (  )‎ ‎(4)对立事件一定是互斥事件,互斥事件不一定是对立事件. (  )‎ ‎[答案] (1)× (2)√ (3)× (4)√‎ ‎2.(教材改编)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是(  )‎ A.至多有一次中靶     B.两次都中靶 C.只有一次中靶 D.两次都不中靶 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ D [“至少有一次中靶”的对立事件是“两次都不中靶”.]‎ ‎3.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是(  )‎ A.必然事件 B.随机事件 C.不可能事件 D.无法确定 B [抛掷10次硬币正面向上的次数可能为0,1,2,…,10,都有可能发生,正面向上5次是随机事件.]‎ ‎4.(教材改编)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3.‎ 根据样本的频率分布估计,数据落在[27.5,43.5]内的概率约是________.‎  [由条件可知,落在[27.5,43.5]内的数据有11+12+7+3=33(个),故所求概率约是=.]‎ ‎5.(2019·济南模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________.‎ ‎0.35 [∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.]‎ 随机事件之间的关系 ‎1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是(  )‎ A.至多有一张移动卡 B.恰有一张移动卡 C.都不是移动卡 D.至少有一张移动卡 A [至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]‎ ‎2.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.‎ A与B,A与C,B与C,B与D B与D [设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,B∩C=∅,A∩C=∅,B∩D=∅,故A与B,B与C,A与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.]‎ ‎[规律方法] 判断互斥、对立事件的两种方法 (1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的充分不必要条件.‎ (2)集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.‎ ‎②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.‎ 随机事件的概率与频率 ‎【例1】 (2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出 险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险 次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ ‎[解] (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.‎ 因此,续保人本年度平均保费的估计值为1.192 5a.‎ ‎[规律方法] 1.概率与频率的关系 频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.‎ ‎2.随机事件概率的求法 利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.‎ ‎ 某保险公司利用简单随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:‎ 赔付金额(元)‎ ‎0‎ ‎1 000‎ ‎2 000‎ ‎3 000‎ ‎4 000‎ 车辆数(辆)‎ ‎500‎ ‎130‎ ‎100‎ ‎150‎ ‎120‎ ‎(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;‎ ‎(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎[解] (1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12.‎ 由于投保额为2 800元,赔付金额大于投保金额的情形是赔付3 000和4 000元,‎ 所以其概率为P(A)+P(B)=0.15+0.12=0.27.‎ ‎(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主是新司机的有0.1×1 000=100(位),而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24(位),‎ 所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,‎ 由频率估计概率是P(C)=0.24.‎ 互斥事件与对立事件概率公式的应用 ‎【例2】 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:‎ ‎(1)P(A),P(B),P(C);‎ ‎(2)1张奖券的中奖概率;‎ ‎(3)1张奖券不中特等奖且不中一等奖的概率.‎ ‎[解] (1)P(A)=,‎ P(B)==,‎ P(C)==.‎ 故事件A,B,C的概率分别为,,.‎ ‎(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.‎ ‎∵A,B,C两两互斥,‎ ‎∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎==,‎ 故1张奖券的中奖概率约为.‎ ‎(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,‎ ‎∴P(N)=1-P(A∪B)=1-=,‎ 故1张奖券不中特等奖且不中一等奖的概率为.‎ ‎[规律方法] 复杂事件的概率的两种求法 (1)直接求法,将所求事件分解为一些彼此互斥的事件,运用互斥事件的概率求和公式计算.‎ (2)间接求法,先求此事件的对立事件的概率,再用公式求解(正难则反),特别是“至多”“至少”型题目,用间接求法就比较简便.‎ ‎ 某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:‎ 派出人数 ‎≤2‎ ‎3‎ ‎4‎ ‎5‎ ‎≥6‎ 概率 ‎0.1‎ ‎0.46‎ ‎0.3‎ ‎0.1‎ ‎0.04‎ ‎(1)求有4人或5人外出家访的概率;‎ ‎(2)求至少有3人外出家访的概率.‎ ‎[解] (1)设派出2人及以下为事件A,3人为事件B,4人为事件C,5人为事件D,6人及以上为事件E,则有4人或5人外出家访的事件为事件C或事件D,C,D为互斥事件,根据互斥事件概率的加法公式可知,‎ P(C+D)=P(C)+P(D)=0.3+0.1=0.4.‎ ‎(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,P=1-P(A)=1-0.1=0.9.‎ 天添资源网 http://www.ttzyw.com/‎

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料