1
23.2.2 中心对称图形
1. 掌握中心对称图形的定义.
2. 准确判断某图形是否为中心对称图形.
重点:中心对称图形的判断.
难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.
一、自学指导.(7 分钟)
自学:自学课本 P66~67 的内容.
探究:中心对称图形的定义:把一个图形绕着某一个点旋转 180°,如果旋转后的图形
能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3 分钟)
将下面左图的四张扑克牌中的一张旋转 180°后,得到右图,你知道旋转了哪一张扑克
吗?议一议.
解:J.
点拨精讲:这里相当于问哪一张扑克牌是中心对称图形.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8 分
钟)
1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什
么?(出示课件图片)
(1)平行四边形 (2)矩形 (3)菱形 (4)正方形
(5)正三角形 (6)线段 (7)角 (8)等腰梯形
解:常见的中心对称图形:线段(线段中点)、平行四边形(对角线交点)、矩形、菱形、
正方形、圆(圆心)等.
2.中心对称图形与中心对称有哪些区别与联系.
解:区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成
中心对称.
联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形;如果将中
心对称图形对称的部分看成两个图形,则它们成中心对称.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15 分钟)
1.英文大写字母中有哪些中心对称图形?
答:(H,I,N,O,S,X,Z).
2.说一说:在生活中你还见过哪些中心对称图形?
学生思考、举例、回答问题,教师展示图片、归纳总结.
3.想一想:你学过的几何图形具有怎样的对称性?
点拨精讲:边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的
正多边形既是轴对称图形,又是中心对称图形.
4.课本第 67 页小练习 2.2
点拨精讲:怎样判断非常见几何图形是否为中心对称图形的妙法:将书本转 180°,即
倒过来后,看图形是否与原来一样.
5.如果公园里的草坪是下面的形状,你能否只修一
条笔直的小路就将这块草坪分成面积相等的两部分?
点拨精讲:由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成
的两部分面积相等.
学生总结本堂课的收获与困惑.(2 分钟)
1.中心对称图形的定义.
2.怎样准确判断某图形是否为中心对称图形.
学习至此,请使用本课时对应训练部分.(10 分钟)