2017年中考数学总复习58份原创试题全集(含答案)
加入VIP免费下载

本文件来自资料包: 《2017年中考数学总复习58份原创试题全集(含答案)》 共有 59 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 第五单元 四边形 ‎1.(2016·长沙)六边形的内角和是( B )‎ A.540°    B.720°    C. 900°    D .360°‎ ‎2.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是( A )‎ A.45° B.55° C.65° D.75°‎ ‎   ‎ ‎3.(2016·株洲)如图,已知四边形ABCD是平行四边形,对角线AC,BD交于点O,E是BC的中点,以下说法错误的是( D )‎ A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE ‎4.(2016·泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( C )‎ A.2 B.3 C.4 D.6‎ ‎    ‎ ‎5.(2015·绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( D )‎ A.6 B.12 C.20 D.24‎ ‎6.如图,平行四边形ABCD中,E,F分别是边BC,AD上的点,有下列条件:①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF,若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是( B )‎ A.①②③④ B.①②③ C.②③④ D.①③④‎ ‎7.(2016·泉州)十边形的外角和是360°.‎ ‎8.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.‎ ‎   ‎ ‎9.(2016·资阳)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎10.如图,▱ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则▱ABCD的周长为20.‎ ‎11.(2016·连云港)在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F.‎ ‎(1)求证:△ADE≌△CBF;‎ ‎(2)若AC与BD相交于点O,求证:AO=CO.‎ 证明:(1)∵BE=DF,‎ ‎∴BE-EF=DF-EF,‎ 即BF=DE.‎ ‎∵AE⊥BD,CF⊥BD,‎ ‎∴∠AED=∠CFB=90°.‎ 在Rt△ADE和Rt△CBF中, ‎∴Rt△ADE≌Rt△CBF(HL).‎ ‎(2)连接AC交BD于O.‎ ‎∵Rt△ADE≌Rt△CBF,‎ ‎∴∠ADE=∠CBF.‎ ‎∴AD∥BC.‎ 又∵AD=BC,‎ ‎∴四边形ABCD是平行四边形.‎ ‎∴AO=CO.‎ ‎12.(2016·益阳)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( D )‎ A.360° B.540° C.720° D.900°‎ ‎13.(2016·福州)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B ( 2,-1 ),C(-m,-n),则点D的坐标是( A )‎ A.(-2 ,1 ) B.(-2,-1 )‎ ‎ C.(-1,-2 ) D.(-1,2 )‎ ‎14.(2016·阜阳颍泉区二模)如图,在▱ABCD中,AD=2AB,CM⊥AD,CN⊥AB,垂足分别为M,N,连接MN,ND.则下列结论一定正确的是①②③④.(请将序号填在横线上)‎ ‎①CN=2CM;‎ ‎②∠NAD=∠NCM;‎ ‎③S△NCD=S四边形ABCD;‎ ‎④AM2-AN2=3CM2.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎15.(2016·菏泽)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,得到四边形DEFG.‎ ‎(1)求证:四边形DEFG是平行四边形;‎ ‎(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.‎ 解:(1)证明:∵D,G分别是AB,AC的中点,‎ ‎∴DG∥BC,DG=BC.‎ ‎∵E,F分别是OB,OC的中点,‎ ‎∴EF∥BC,EF=BC.‎ ‎∴DG=EF,DG∥EF.‎ ‎∴四边形DEFG是平行四边形.‎ ‎(2)∵∠OBC和∠OCB互余,‎ 即∠OBC+∠OCB=90°,‎ ‎∴∠BOC=90°.‎ ‎∵M为EF的中点,OM=3,∴EF=2OM=6.‎ ‎∵四边形DEFG是平行四边形,‎ ‎∴DG=EF=6.‎ ‎16.(2016·合肥蜀山区一模)如图,四边形ABCD中,∠A=∠ABC=90°,AD=10 cm,BC=30 cm,点E是边CD的中点,连接BE并延长与AD的延长线相交于点F.‎ ‎(1)求证:四边形BDFC是平行四边形;‎ ‎(2)若△BCD是等腰三角形,求四边形BDFC的面积.‎ 解:(1)证明:∵∠A=∠ABC=90°,‎ ‎∴∠A+∠ABC=180°.∴BC∥AD.‎ ‎∴∠CBE=∠DFE.‎ 又∵点E为CD的中点,∴CE=DE.‎ 又∵∠BEC=∠DEF,∴△BEC≌△FED(AAS).‎ ‎∴BE=FE.∴四边形BDFC是平行四边形.‎ ‎(2)分三种情况讨论:‎ ‎①BC=BD=30 cm时,由勾股定理得AB==20 cm,‎ ‎∴S四边形BDFC=DF·AB=30×20=600 (cm2);‎ ‎②BC=CD=30 cm时,过点C作CG⊥DF于点G,则四边形AGCB是矩形.∴AG=BC=30 cm.‎ ‎∴DG=AG-AD=20 cm.∴CG=10 cm.‎ ‎∴S四边形BDFC=DF·CG=30×10=300 (cm2);‎ ‎③BD=CD时,BC边上的中线垂直于BC,从而得到BC=2AD=20 cm,与已知条件矛盾,∴不成立.‎ 综上,四边形BDFC的面积是600 cm2或 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎300 cm2‎ ‎17.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于__12或20__.‎ 提示:分两种情况进行讨论,如图.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料