北师大版九年级数学上册全册导学案(共85份)
加入VIP免费下载

本文件来自资料包: 《北师大版九年级数学上册全册导学案(共85份)》 共有 85 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 第 4 课时 黄金分割 目标导航:⒈知道并理解黄金分割的定义,熟记黄金 比: ⒉会找一条线段的黄金分割点。 ⒊加深理解与掌握线段的比、成比例线段等有关知识。 学法指导:线段的黄金分割是成比例线段具体应用的一个典型例子,学习本节知识,首先要弄清线段黄金 分割的意义,在此基础上通过动手操作, 会将线段黄金分割。 新知探究: ㈠、黄金分割的定义: 1、动手操作,然后算一算,完成下面的填空: 度量线段 AC、BC 的长度,线段 AC= ,BC= , 计算 = 、 = , 与 的值 相等吗? ※在线段 AB 上, 点 C 把线段 AB 分成两条线段 和 ,如果 = , 那么称线段 AB 被点 C ,点 C 叫做线段 AB 的 ,AC 与 AB 的比叫做 。其中 = ≈ ※⑴、黄金分 割是一种分割线段的方法,一条线段的黄金分割点有 个。 ⑵、黄金比是两条线段的比,没有单位,它的比值为 ,精确到 0.001 为 。 2、想一想:点 C 是线段 AB 的黄金分割点,则 = 。 ㈡、确定黄金分割点: 如图,已知线段 AB,按照如下方法作图: (1)经过点 B 作 BD⊥AB,使 BD= AB. (2 )连接 AD,在 DA 上截取 DE=DB. (3)在 AB 上截取 AC=AE.点 C 就是线段 AB 的黄金分割点。 ㈢、黄金矩形: 宽与长的比是: 的矩形叫做黄金矩形。 【绿色通道】 黄金分割是 一种特殊的分割线段的方法,分割后,原线段、较长线段、较短线段之间有固定的比值关系, 知道其中一条线段的长度,可以求出另外两条线段的长度;一条线段有两个黄金分割点。 课堂消化诊测: ⒈已知线段 AB=2,点 C 是 AB 的 黄金分 割点,且 AC>BC,则 AC= 。 ⒉已知如图,AB=2,点 C 是 AB 的黄金 分割点,点 D 在 AB 上,且 AD2=BD·AB,求 的值。 AB AC AC BC AB AC AC BC A BC AB AC AB AC 2 1 AC CD A B 5 −1 2 5 −1 22 ⒊已知点 P 是线段 AB 的黄金分割点,AP>PB,设以 AP 为边的正方形的面积为 S1,以 PA、PB 为邻边的矩 形的面积为 S2,S1 与 S2 相等吗?说明理由。 ⒋一个矩形是 黄金矩形,若它的长 为 4cm,则它的宽为 。 超越自我:以长为 2 的线段 AB 为边作正方形 ABCD,取 AB 的中点 P,连结 PD,在 BA 的延长线上取点 F, 使 PF=PD,以 AF 为边作正方 形 AMEF,点 M 在 AD 上,如图,(1)求 AM、DM 的长.(2)说明 AM2=AD·DM 的 理由。(3)根据(2)的结论你能找出图中的黄金分割点吗? 收获与困惑:(对照本节课的学习目标,谈谈你的收获与困惑,和同伴交流。) A BCDC

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料